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ABSTRACT
Recently, the fine-grained geolocalisation of User Generated Short
Text (UGST) has been attracting much attention from academia.
Most of existing methods rarely introduce the semantic information
about a location in UGST, and do not prioritize the entities accord-
ing to their importance. These reduce the performance of existing
approaches. To tackle these problems, we propose a Fine-grained
Geolocalisation of user-generated Short Text based on LBSN (FGST-
L), which consists of three key components: 1) Using Foursquare
as a source to build the tight coupling between entity and location,
which can address the location-annotated sparseness problem. 2) Fil-
tering out UGST if it does not contain any location-specific entities,
which allows us to eliminate the interference of noisy UGSTs at the
early stage. 3) Ranking the candidate locations for each remaining
UGST based only on its textual data, and selecting the top-ranked
location ( or top n locations ) for UGST. The experimental results
show the effectiveness of FGST-L.
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1 INTRODUCTION
With the increasing popularity of mobile social networking, the
value of User Generated Short Text (UGST) in social networks is
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increasingly attracting much attention. Since UGST is spatially fine-
grained [3], it could benefit many widespread applications, such as
event detection [1], emergency analysis [8], digital health [9], etc.

However, since extremely few UGSTs are geocoded [2, 5, 6], the
geolocalisation of UGST has become an important task needs to be
solved. In this work, we focus on the fine-grained geolocalisation
(i.e. street or special restaurant), which is very different from the
works on coarse-grained geolocalisation. Generally, these works
on coarse-grained geolocalisation link UGSTs to their originating
cities or to time zones [2]. Clearly, the fine-grained geolocalisation
of UGSTs is more useful for applications.

In existing works on fine-grained geolocalisation, Sheila et al. [4]
geolocated the tweets based on content-similarity. Pavlos et al. [10]
improved the above method by considering time-evolution charac-
teristics in matching algorithm. Jorge et al. [3] adopted a weighted
majority voting algorithm to the problem of fine-grained geolo-
calisation of tweets. Chong et al. [2] formulated the fine-grained
geolocation as a ranking problem, and then proposed several models
that leverage three types of signals from locations, users and peers.
Most of existing works largely relied on GPS/human-annotated
UGST to infer the location. When users have been less inclined
to actively annotate UGSTs [5], the fine-grained geolocalisation is
being a very challenging task.

In this paper we propose a Fine-grained Geolocalisation of user
generated Short Text based on LBSN (FGST-L). We address the
location-annotated sparseness problem by building the probabilis-
tic models for locations using the entities in unstructured UGSTs.
Our work differs from existing works in that we build the coupling
between entity and location, not word and location. An entity has
more semantic information than a word. Besides, we also consider
the importance of different entities for geolocalisation. Following
the idea of IDF 1, we assign different weights to different entities
based on their popularity. To depict the tight coupling between en-
tity and location, we use Foursquare as a source for building these

1https://en.wikipedia.org/wiki/Tf-idf
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Figure 1: the Framework of FGST-L
probabilistic models. Based on the coupling models, we sketch our
FGST-L. Given a non-geotagged UGST, we firstly extract the entities
from UGST, and then determine whether this UGST contains the
location-related information. We use the naive Bayes model to rank
the candidate locations for the UGST with location-specific entities.
Finally, we assign the top-ranked location to UGST. Experiment re-
sults on real datasets illustrate the superiority of FGST-L compared
with the-state-of-art methods.

2 THE PROPOSED APPROACH
2.1 Overview
Figure 1 illustrates the high level data flow of our FGST-L. Our
proposed method consists of four steps. (I) Extracting the enti-
ties in UGST : we extract all entities from each UGST based on
Microsoft Probase2. (II) Building the probabilistic model of en-
tity and location : we use Foursquare as source to build the tight
coupling between entity and location, which can address the loca-
tion sparseness problem. (III) Filtering the UGSTs : we filter out
UGST if it does not contain any location-specific entities, which
allows us eliminate the interference of noisy UGSTs at early stage.
(IV) Ranking the candidate locations : we rank the candidate
locations for each remaining UGST based only on its textual data,
and select the top-ranked location for UGST. We will explain each
step in detail in the following subsections.

2.2 Extracting Entities in UGST
For the sake of text analysis, we firstly preprocess each UGST by
breaking the UGST into tokens, stemming them, and removing stop
words. After that, we formally model each UGST t as a set of words,
denoted by t ′ = {w1,w2, ...,wi , ...,wn }, where wi is the ith word
of UGST t . Intuitively, an entity contains more sematic information
than a word. For example, the entity New York is more indicative
than word New or word York. Thus, we further denote t as a set
of entities {e1, e2, ..., ei , ..., em }, where ei = {wk ,wk+1, ...,wl |1 ≤

k ≤ l ≤ n}.
Given a UGST t , we expect to obtain all entities in t . We firstly use

the Stanford natural language processing tool [7] to get the bag-of-
words in t , then find all possible entities based onMicrosoft Probase.
As a result, we obtain t = {e1, e2, ..., em }. In this situation, entity ei
and entity ej may contain the common words. For example, both
Washington square park and square park are permissible entities in
UGST amazing views ofWashington square park. This is a reasonable
approach because some users refer to Washington Square Park as
Washington square park, and others refer as square park. Surely the
entities we obtained are restricted to the selected repository. The
reason whywe select Probase is that Probase provides a tremendous
concept space and concept clusters.
2https://concept.research.microsoft.com/

2.3 Building Probabilistic Model of Entity and
Location

Foursquare, as a location-based social network, has a collection
of PoIs (Point of Interest), and each tip is associated with a UGST
message and a PoI. This makes Foursquare a valuable resource for
building high quality models for locations [5].

Assume the set of locations in Foursquare is L = {l1, l2, ..., ln }.
To depict the coupling between entity and location, we first build
a conditional probability model for each PoI based on a set of tips
associated to that PoI. We denote the set of tips associated to PoI
li as T (li ) = {t1, t2, ..., tm }. Obviously, different PoIs have differ-
ent numbers of tips. These popular PoIs may have more tips, so
their models are higher quality. Let t f (e, t) denote the number of
occurrences of entity e in the UGST t , c(e, l) denote the number of
occurrences of entity e in all tips associated to PoI l . We use the
maximum likelihood estimation method to calculate the probability
of entity e in PoI l as follows.

p(e |l) =
c(e, l)∑

ek ∈E(l ) c(ek , l)

c(e, l) =
∑

t ∈T (l )

t f (e, t)

E(l) = {e |e ∈ t, t ∈ T (l)}

(1)

where E(l) denotes the set of entities associated to PoI l .
In some cases, if c(e, l) = 0, there is p(e |l) = 0. This leads to zero

probability problem. We use Laplace smoothing method to address
this problem. p(e |l) is further defined as follows.

p(e |l) =
c(e, l) + 1∑

ek ∈E(l ) (c(ek , l) + 1)
(2)

Then we can calculate the probability of UGST t in PoI l as follows.

p(t |l) =
∏
ei ∈t

p(ei |l)

=
∏
ei ∈t

c(ei , l) + 1∑
ek ∈E(l ) (c(ek , l) + 1)

(3)

2.4 Filtering UGSTs
Geocoding of UGSTs is largely dependent on the inferability of
location from textual information. For example, we can not infer
the location of UGST It is a good day. Before geocoding a UGST, we
determine whether this UGST has some hints about location. We
filter this UGST out if it has no any indicative information.

In some cases, the hint about location occurs in UGST explicitly.
For example, entity Washington square park is an explicit hint in
UGST I am at Washington square park now. Given an entity ei ∈ t ,
we define the following indicator function to illustrate whether e is
a location.

1ex (ei , L) =
{
1, ei ∈ L

0, otherwise
(4)

We further illustrate whether UGST t has hint about location by
the following function, where

∨
is OR operation.

11
(t, L) =

∨
ei ∈t

1ex (ei , L) (5)
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In other cases, the hint about location appears implicitly. For ex-
ample, entity Big Apple is the implicit hint in some UGSTs. Inspired
by TFIDF’s successful application on identifying local words [5],
we define the following function.

ft f idf (e, l) =
c(e, l) + 1∑

ek ∈E(l ) (c(ek , l) + 1)
×

[
ln

|L|

d f (e) + 1
+ 1

]
(6)

where d f (e) is the number of locations having e in the UGSTs.
If ft f idf (e, l) ≥ θ , we consider the entity e as a local entity with

respect to l . θ is a predefined threshold. The greater θ is, the smaller
the number of identified local entities is. θ is a tuning parameter.
The indicator function is defined over ft f idf (e, l) as:

1im (ei , l) =

{
1, ft f idf (ei , l) ≥ θ

0, otherwise
(7)

We further illustrate whether UGST t has any implicit hint by
the following function.

12
(t, L) =

∨
l ∈L

∨
ei ∈t

1im (ei , l) (8)

We define the following indicator function to express whether t
has hint about location.

1(t, L) = 11
(t, L)

∨12
(t, L) (9)

If 1(t, L) = 1, we consider that t has hint about location. Other-
wise, we filter t out.

2.5 Ranking Candidate Locations
After filtering out those UGSTs without any hint about location,
we need to rank the candidate locations for each UGST, and select
the top-ranked location ( or top n locations ) as the location of
UGST. Given a UGST t = {e1, e2, ..., em } and its candidate locations
L = {l1, l2, ..., lm }. We use simple naive Bayes probabilistic model
to rank the candidate locations. The probability that the location of
t is l can be defined as follows.

p(l |t) ∝ p(t |l) × p(l) =

(∏
ei ∈t

p(ei |l)

)
× p(l)

p(l) =
N (l)∑

li ∈L N (li )

(10)

where N (l) is the occurrences of l .
UGSTs often contain general entities such as delicious food and

park. Those entities have lower discriminability. Instead, there are
also some local entities, such as Big Apple, which are tight coupling
with special locations. These entities have higher discriminability.
In other words, the importance of an entity is weighted based on
its occurrence as a location identifier. Given entity ei , its weight is
defined as follows.

w(ei ) = 1 + ln
|L|

d f (ei ) + 1
(11)

The probability that the location of t is l can be further defined
as follows.

p(l |t) ∝

(∏
ei ∈t

(w(ei ) × p(ei |l))

)
× p(l) (12)

lnp(l |t) ∝
∑
ei ∈t

(lnw(ei ) + lnp(ei |l)) + lnp(l)

=
∑
ei ∈t

lnw(ei ) +
∑
ei ∈t

lnp(ei |l) + lnp(l)
(13)

3 EXPERIMENTS
3.1 Datasets
We crawl the Foursquare locations ( called PoI ) from New York
spanning from Jan. 2018 to Apr. 2018, and their tips by Foursquare
API. A dataset consiting 498722 tips and 74942 PoIs was obtained.
The distribution of tips discernibly varied over all PoIs, see Table 1.

Table 1: Relationship between PoIs and their Tips
Tips ≥ 1 ≥ 10 ≥ 20 ≥ 30 ≥ 40 ≥ 50
PoIs 74942 9208 4939 3790 2930 2132

The numbers of tips for about 87.7% of PoIs are less than 10.
Only 3790 PoIs have more than 30 tips. Intuitively, the number of
tips has some effect on the performace of FGST-L. We conduct the
experiment to validate our prediction.

To prove effectiveness and generalization of FGST-L, we also
gather a set of tweets from Twitter and a set of posts from Facebook.
We only select the tweets or posts from New York. After selection,
we obtain 19231 tweets and 6699 posts. 16.7% of posts and 32.4% of
tweets are geocoded the fine-grained location, which are used in
our evaluation. Besides, we also select 12000 tips from Foursquare,
and 6000 tips containing hints about location. These three datasets
are our test datasets and named as FB, TW and FS, respectively.

3.2 Experimental Setting
We compare FGST-L with the following representative methods.

- FRV [5]: a 3-step technique (Filtering-Ranking-Validating)
for fine-grained tweet location prediction, which uses Fours-
quare as resource for building the tight coupling between
words and locations.

- LW [2]: a Location-indicative Weighting scheme which as-
signs more weights to location-indicative words, and is easily
incorporated into the naive Bayes model.

- WMV [3]: a Weighted Majority Voting algorithm to the prob-
lem of fine-grained geolocalisation of tweets, which esti-
mates the geographical location of tweet by collecting the
geo-location votes of the geo-tagged tweets that are most
similar regarding their contents to that tweet.

For all methods, we conduct all experiments on the same datasets.
We employ two widely used Accuracy@1km, Average Error Distance
(km) [3] to evaluate the performance of all algorithms.
Average Error Distance (km): we compute the distance on Earth be-
tween the predicted location and the real coordinates of the UGST
in our ground truth.
Accuracy@1km: the accuracy of the model is measured by deter-
mining whether a UGST t has hint about location, and whether a
predicted location lies within a radius of 1km from the real location.

3.3 Performance of FGST-L w.r.t θ
As shown in Eq. (7) and Eq. (8), given a UGST t, t is filtered out if all
ft f idf (e, l) < θ . Naturally, the predefned threshold, θ , has a strong
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Figure 2: Results w.r.t. θ

influence on the results. To study the effect of θ on the results, we
conduct the experiments according to the different values of θ . The
results are shown in Figure 2.

The left figure of Figure 2 shows the Accuracy w.r.t. θ . On FS
and TW, as θ increases, the accuracy of FGST-L rises firstly and
then drops. The accuracy reaches peak when 0.3 < θ < 0.4. Gener-
ally, many UGSTs do not have any hint information about location.
When θ is relatively small, many UGSTs without location informa-
tion are mistaken for UGSTs with location information. This leads
to reduce the accuracy of FGST-L. Similarly, when θ is relatively
large, FGST-L misjudges the UGSTs with location information as
UGSTs without location information, which also reduce the accu-
racy. On FB, the accuracy curve shows different trend. The curve
rises quickly at the beginning then rises slightly later. Because most
of UGSTs in FB are location-independent, as θ increases, more and
more UGSTs are correctly classified as location-independent UGSTs.
When θ > 0.4, most of UGSTs without location information have
been correctly filtered out. This leads to the increased trend slows.
In FB, the severe data skew is the main reason that the accuracy
keeps increasing. When θ = 0.7, all UGSTs are filtered out, and the
accuracy reaches peak at 83.3%.

The right figure of Figure 2 shows the Average Error Distance
w.r.t. θ . When 0.3 < θ < 0.4, the average error distance of inferred
location is optimal. Average Error Distance has minimum value
when θ > 0.6. However, most of UGSTs are filtered out in this
situation, which is not our expectation.

3.4 Performance Comparison between FGST-L
and Existing Works

Figure 3 illustrates the performance comparsion between FGST-L
and existing works on three datasets. From the results, we easily
reach the following conclusions.

FGST-L outperforms all baselines which validates the effective-
ness of FGST-L. This is because we 1) build the tight coupling
between entity and location, not word and location. The entity
has more semantic information than word; 2) assign the entities
different weights according to their occurrences; 3) filter out the
location-independent UGSTs.

FRV also performs better than WMV and LW. This indicates that
filtering out the UGSTs without location information is an effective
step. When some of UGSTs have no hint about location, the filtering
process can reduce the impact of noisy data.

FGST-L and FRV perform better on FB than on FS and TW.
As described above, about 83.3% of UGSTs on FB are location-
independent. The filtering process filters these UGSTs out, which
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increases the accuracy. Besides, the accuracies of all methods on FS
are worse than results on FB and TW. It is because the percentage of
location-dependent UGSTs in FS is the largest. This futher indicates
that determining whether a UGST is location-independent is easier
than inferring the fine-grained location of UGST.

3.5 Performance of FGST-L w.r.t Number of
Tips

As shown in Table 1, there is somewhat difference on the number of
tips for different PoIs. Intuitively, the more the number of tips is, the
more accurate the probabilistic model for PoI is. In this subsection,
we futher conduct the experiments to validate whether the number
of tips has impact on the probabilistic models for locations. We
train the probabilistic models with different numbers of tips, and
calculate the accuracy of each model. The results are shown in
Figure 4.

We find that the number of tips has not much impact on the
probabilistic models for locations. This result is contrary to our
intuition. Especially, when it is larger than 20, the number of tips has
little impact on the model. This result may be due to two reasons:
1) in our three test datasets, more than half of UGSTs are location-
independent; 2) the futher study shows that the entities in 20 UGSTs
cover almost entities in all UGSTs for a PoI. It is appropriate that we
build the tight coupling between entities and locations based only
on 20 UGSTs. This could reduce the need for computing resources.

4 CONCLUSIONS
In this paper, we consider both the tight coupling between entities
and locations and the importance of different entities for geolocali-
sation, and then propose a novel Fine-grained Geolocalisation of
user generated Short Text based on LBSN, where the weights of
different entities are determined according to their occurrences in
UGSTs. Experiments on real datasets validate the effectiveness of
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the proposed method.
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