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Abstract

Collaborative filtering (CF) makes predictions about user preferences for items
(e.g., movies, products, restaurants) by exploiting the similarity patterns across
users. CF represent users as the set of items they consumed. Similarly, documents
are often represented as their set of words. Document modeling methods and CF
have however evolved mostly separately. In this work, we apply older and more
recent CF methods to the document modeling field. Interestingly, we find those
approaches learn more transferable latent representation of documents over the
popular Neural Variational Document Model [Miao et al., 2016], as highlighted by
the important gains on a document classification transfer task. Lastly, we provided
a qualitative analysis of the latent variables in exposure matrix factorization [Liang
et al., 2016] when applied to documents.

1 Introduction

Unsupervised document models or topic models refers to a type of statistical algorithms for discover-
ing latent representations or abstract topics in a collection of documents. They allow for clustering of
large number of (unlabeled) documents. Although recurrent neural networks (RNN) have enjoyed
tremendous success in NLP, bag-of-words (BoW) are still widely used to represent large documents
because of memory and training constraints. The recommendation system (RecSYS) domain also
employs BoW representations. Precisely, users are represented as the set of items they consumed
(because the models employed in this field are a often invertible, one can also think of an item as the
set of users that consumed them). Exploiting similarity patterns across users to infer their preferences
is often referred to as collaborative filtering (CF). Albeit those two fields share lots of commonalities,
they both have evolved somewhat separately. In this work, we bridge the gap between both domains
by applying both standard and more recent CF models to the task of document modeling. Concretely,
we apply matrix factorization, weighted matrix factorization [Hu et al., 2008] and exposure matrix
factorization [Liang et al., 2016] to BoW representations of documents. To evaluate the relevance
of such approaches for topic modeling, we compare their performance with the Neural Variational
Document Model (NVDM) [Miao et al., 2016]. To the best of our knowledge, NVDM achieves
state-of-the-out log-likelihoods on BoW document representations. Because matrix factorization
models don’t share the same probabilistic space as standard language models (see Section 4 for more
details) we measure the models against each other on a downstream document classification task.
Specifically, a linear classifier is trained on the documents’ representations in order to predict their
classes. The popular 20news group dataset is used.
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Remarkably, we fing that recently proposed matrix factorization managed to outperform deepers
models, i.e. NVDM. Thus, downweighting (un)observations is an extremely powerful tool for
document modeling. Aditional to the quantitative results, we provide a qualitative analysis of the
latent variables in exposure matrix factorization [Liang et al., 2016]. In Section 2, we go over old and
more recent developments in CF. Section 3 reviews standard document modeling approaches. Section
4 compares and contrast both set of techniques. We present quantitative and qualitative results in
Section 5.

2 Collaborative Filtering Techniques

In a typical recommendation system setting, each user u = 1, ..., U consumes items i = 1, ...I and
the task of interest is to suggest new items that a user would be interested in. The observations can be
encoded in a sparse Y = {yui} matrix, often called consumption matrix. In this work, we focus on
the implicit data case as it is easily applicable to document compression. The most common way to
frame this task is to model the users and items in such a way that we can predict the consumption (or
not) of held-out user-items pairs. Importantly, all of the users preferences/representations are learned
at training time. This setting is often referred to as weak generalization. In a strong generalization
setting, the model would learn new users’ representation at test time while keeping the items’ attribute
fixed [Marlin, 2004].

To test the generalization capabilities of the learned models, information retrieval metrics (for example,
precision and recall) are standard. In this work, we will use recall (Recall@k), mean average precision
(MAP@k) and normalized discounted cumulative gains (NDCG@k). For details on the metrics, We
refer the reader to Liang et al. [2016]. In the context of document modeling, these metrics will assess
document completion abilities of a model.

Next, we describe models that have been successfully applied to collaborative filtering problems and
that will be pertinent to our analysis. All models are part of the matrix factorization family. This list
is non-exhaustive.

2.1 Matrix Factorization

Matrix factorization (MF) is the standard approach to collaborative filtering [Koren et al., 2009].
Given the observed entries in the consumption matrix Y , matrix factorization models infer latent user
preferences and item attributes by factorizing Y . They assume that the observations are drawn from a
specific distribution e.g. a Gaussian or a Poisson when yui ∈ N or a Bernoulli when yui ∈ 0, 1. For
the rest of the paper, we will focus on the Gaussian case. Formally, Gaussian matrix factorization
[Mnih and Salakhutdinov, 2007] is:

θu ∼ N (0, λ−1θ IK)

βi ∼ N (0, λ−1β IK)

yui ∼ N (θ>u βi, λ
−1
y ),

where θu and βi represent the user and item latent representations, or users’ preference and item’s
attributes in recommendation system parlance. The variance of the Gaussian distributions are
parametrized by the λs and are treated as hyperparameters controlling the regularization. IK stands
for the identity matrix of dimension K. Theses models can easily be understood from a generative
model perspective. First, users preference θu and item attributes βi are drawn. Next, the observations
yui are drawn from the previously chosen distribution i.e. Gaussian in our case. A graphical
representation of this process is shown in Figure 1a.

When applied to documents, θu represents the document latent representations and βi the word
embeddings. In MF, both documents and words are encoded in the same RK latent space.

2.2 Weighted Matrix Factorization

In implicit data a missing observation can indicate a negative preference for an item, but it could also
indicate that a user does not know about a particular item. To model this ambiguity, weighted matrix
factorization (WMF) [Hu et al., 2008] proposes to downweight all unobserved user-item interactions:

yui ∼ N (θ>u βi, c
−1
yui),
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Figure 1: a) Plate notation of the matrix factorization model. b) Plate notation of the exposure matrix
factorization model Liang et al. [2016].

where the ”confidence” c is set such that c1 > c0. Because of the dependency between a user-item
interaction and itself, WMF is not a valid generative model. In section 2.3, we will explain how to
modify it such that it becomes one.

Going back to the document modeling analogy, WMF factorizes the document-word matrix while
underweighting the omitted (unobserved) words in the loss function.

2.3 Exposure Matrix Factorization

Inferring (latent) users’ preferences and items’ attributes from implicit data has its downside. For
example, what if a user lives too far away from a restaurant that he would otherwise like, or what if a
user is not aware of a movie that he would have otherwise enjoyed. MF and WMF would interpret
this (un)observation as a dislike and would learn latent representations accordingly. Exposure matrix
factorization (Expo-MF) [Liang et al., 2016] addresses this problem. The model infers if a user
was exposed or not to the an unconsumed item. E.g., if we go back to the restaurant example the
model could underweight the (un)observation of the restaurant for which the user’s preferences points
to liking. Concretely, A = {aui} represents the exposure matrix, which is part observable (when
yui > 1) part latent (when yui = 0). Formally, Expo-MF is :

θu ∼ N (0, λ−1θ IK)

βi ∼ N (0, λ−1β IK)

aui ∼ Bernoulli(µui)

yui | aui = 1 ∼ N (θ>u βi, λ
−1
y )

yui | aui = 0 ∼ δ0, (1)

where δ0 denotes that p(yui = 0 | aui = 0) = 1, and a set of hyperparameters denoting the inverse
variance (λθ, λβ , λy) is introduced. µui is the prior probability of exposure, which we will set to be
proportional to item popularity (or word occurrence in our case).

From a generative modeling perspective, whether a user is exposed to an item is modeled as Bernoulli.
Conditional on being exposed, users preferences comes from a matrix factorization model. Similarly
to MF and WMF, the conditional distribution is factorized to K user preferences θi,1:K and K item
attributes βu,1:K . A graphical representation of the model in Equation (1) is given in 1b.

ExpoMF applied to document modeling can be understood easily with the following example. Let "I
love dogs" be a document in the dataset. Because "dogs" can often be substituted with "puppies",
one could hope that ExpoMF would decrease the documents exposure to the word "puppies", thus
reducing the need for the MF to create document and word embeddings reflecting that "puppies" is
not in the document. A qualitative analysis of this phenomenon is provided in Section 5.4.

3 NLP Techniques

Unsupervised document models or topic models refer to a type of statistical models for discovering
latent representations or abstract topics in a collection of documents. They can be used to cluster
(unlabeled) documents. Latent Dirichlet Allocation (LDA) Blei et al. [2003] is the original and
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standard topic model. Under this model, documents are encoded into semantic vectors where each
dimension can be thought of as a topic.

Undirected topic models using restricted Boltzmann machines (RBMs) have also been proposed as
well as a neural topic-model based on autoregressive modelling [Larochelle and Lauly, 2012] called
DocNADE. A topic model based on Sigmoid Belief Networks and Deep AutoRegressive Neural
Networks structures can be found in Mnih and Gregor [2014] where an MLP is employed to build a
Monte-Carlo control variate estimator for stochastic estimation.

Since, recurrent neural networks (RNNs) have had tremendous success at modelling sequential data,
e.g. speech, language modeling, machine translation, etc. However, they remain difficult to train on
long sequences like documents in great part because of GPU memory constraints. Moreover, when
RNNs model (unlabelled) documents, it is unclear where (or even if) the document representations
live. For this reason, BoW representations is still standard for modelling whole documents.

In most unsupervised learning cases, state-of-the-art methods use the variational autoencoder frame-
work [Kingma and Welling, 2013, Rezende et al., 2014] (VAEs). VAEs are often used to train deep
generative models and are described in Section 3.1. Applying VAE on BoW representations [Miao
et al., 2016] outperforms all aforementioned models thus achieving the state-of-the-art for document
modeling. For this reason, we compare against this methodology in our empirical study (Section 5).
The specific approach we compare to is Neural Variational Document Model (NVDM) [Miao et al.,
2016] and is described in Section 3.2.

3.1 Variational Autoencoder

The VAE [Kingma and Welling, 2013, Rezende et al., 2014] is a regularized version of the traditional
autoencoder (AE). It consists of two parts : an inference network qφ(z|x) that maps an input x to a
posterior distribution of latent codes z, and a generative network pθ(x|z) that aims to reconstruct the
original input conditioned on the latent encoding. In practice, both models are represented as neural
networks.
By imposing a prior distribution p(z) on latent codes, this model enforces the distribution over z to
be regular and well-behaved. This property enables proper sampling from the model via ancestral
sampling from latent to input space. Without it, qφ(z|x) could encode the inputs as single points
without the need to generalize, i.e., learning a look-up table1.
The full objective of the VAE is then:

L(θ;x) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z)) ≤ log p(x), (2)

which is often call evidence lower bound (ELBO). The ELBO is a valid lower bound of the log-
likelihood, thereby making VAE proper generative models. For a more in depth analysis of VAE we
refer the reader to Doersch [2016].

An optimization problem plagues VAE: the KL term can over-regularize the latent code, i.e. the
posterior qφ(z|x) collapse towards the prior p(z), thus not encoding anything about x. This issue is
often refered to as latent code collapse. To relax some pressure on the latent code, β-VAE [Higgins
et al., 2016] slighty modifies the VAE objective:

Lβ(θ;x) = Eqφ(z|x)[log pθ(x|z)]− β ·KL(qφ(z|x)||p(z)) ≤ log p(x),

The β hyperparameter now controls the latent code regularization. Reducing it will allow the model to
encode more information in the posterior, although the representations might not be as parsimonious
as the VAE’s. Setting it to 0 collapse the model into a standard AE.

A particular advantage of VAE over CF methods leveraging Expectation-Maximisation (EM) is that
the encoder qφ(z|x) can be used to encode new data, whereas EM requires retraining. This process is
refered to as amortized inference. Arguably, amortized inference in less sample-efficient than EM
because qφ(z|x) needs to learn how to generalize to new observations. However, we will go over
some of its advantages in the next Section 4.

3.2 Neural Variational Document Model

The NVDM is a simple instance of unsupervised learning where a continuous hidden variable
z ∈ RK , which generates all the words in a document independently, is introduced to represent its

1In this case the model collapses to a regular AE.
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semantic content. LetX ∈ R|V | be the BoW representation of a document with vocabulary V . Then,
straightforwardly Equation 2 can be applied to documents and thus the likelihood can be maximized.
Finally, E[qφ(z|x)] can be used as a transferable representations of documents.

Finally, the model assumes that the observations were drawn from a multinomial distribution. In this
work, we treated the output distribution as an hyperparameter sampled from {Bernoulli, Gaussian,
multinomial}.

4 Contrasting Both Set of Techniques

In this section, we contrast collaborative filtering techniques with the NVDM. The methodologies
can be applied to both user-item interactions or document-words occurrence. Thus, for the remaining
of this section we use the terms user and item (instead of document and word).

First, an important difference comes from the inference method or dataset split. In CF, the training
set is composed of all users and the held-out set contains unseen (often randomly sampled from the
observed set) user-item observations. The models learn to predict a user-item interaction given both
latent codes (users and items) learned at training time.

In contrast, in the NVMD case the training dataset is composed of randomly sampled users and the
remaining users are assigned to the held-out set. At test time, NVDM encodes new users with its
inference network qφ(z|x). The posterior can then be used to compute the log-likelihood of said
users with annealed importance sampling. Moreover, the latent codes, e.g. E[qφ(z|x)], can be used
as a document representation in downstream tasks, in our case document classification.

Considering the performance of both approaches on held-out likelihood, CF methods have the
advantage of modeling all users (or documents) at training time whereas NVDM has to generalize to
new users. However, NVDM has access to more data per user. Thus, it is unclear if a methodology
has a clear advantage over the other. From a practitioner’s perspective, in some cases it might be
more important to find the most accurate representations for the users, i.e. learn all representations at
training time with standard CF. Although, the NVDM framework might become handy once new
users’ representations are needed because the encoder qφ(z|x) can be used in lieu of retraining the
model.

Another considerable difference between both approaches is the choice of distribution for the obser-
vations. In standard CF, observations are modeled with Bernoulli or Gaussian distributions whereas
standard language modeling (including NVDM) uses Multinomials. The dynamics are quite different.
E.g. in CF, the model can increase the probability of seeing a particular item without decreasing the
probability of observing the others. In the multinomial setting, this is not possible: because of the
normalization over all items, if the model wants to increase the probability mass of an item it needs
to remove it from elsewhere. Note, Liang et al. [2018] is a recent exception which models CF data
using a multinomial.

Unfortunately, we can’t compare the methodologies on held-out likelihood because the models’
outputs live in different probability spaces. However, we can compare them by means of performance
on a downstream task, in our case document classification (see Section 5.3). Precisely, the accuracy
obtained by a document classifier trained on latent representations will serve as a proxy for the quality
of the representations.

5 Empirical Study

In this section, we compare recommender systems models, i.e. MF, WMF and ExpoMF, with NLP
models, i.e. NVDM, on the downstream task of document classification. The downstream task will
shine light on the transferability of the learned representations, which is of the utmost importance in
unsupervised learning. We find that the the MF techniques that downweights the (un)observations
dramatically outperform the shallow NDVM and marginally outperforms the deeper version. Next,
we provide a qualitative analysis of the latent exposures aui infered by ExpoMF. MORE.
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Recall@20 Recall@50 NDCG@100 MAP@100
MF 0.33 0.45 0.33 0.19

WMF 0.36 0.48 0.47 0.23
ExpoMF 0.34 0.46 0.44 0.21

Table 1: Comparison between MF, WMF [Hu et al., 2008] and Expo-MF [Liang et al., 2016] in the
low data regime.

5.1 Dataset

To test the quality of the learned document representation we choose a document dataset with labels,
the classic news corpora 20NewsGroup.2 Every document in the dataset falls into one of 20 categories.
We created two datasets in order to test the models in a low- and big-data regime. The vocabulary
sizes are 1.5k and 10k respectively. The number of documents are 9k and 17k respectively.

5.2 Experimental Procedure

For both set of techniques, we proceeded in the same manner. First, we learn document and word
embeddings in an unsupervised fashion with the methods described in Section 2 and 3. Early-stopping
is performed on the validation set. Next, a linear classifier learns to map the latent representations of
each document to their respective class. Again, early-stopping is performed on a new validation set.
Finally, we pick the best performing models on the validation set and report their test error.

In order to fairly compare both methodologies we benchmark the CF models against 1-layer NVDM,
because MF models are linear. For contextualization we also report the results for deeper VAE and
for a supervised multi-layer perceptron (MLP).

Finally, because of the latent code collapse that hinders VAE training, we also report the results of
β-VAE, i.e. 0 < β < 1, and standard AE, ie. β = 0.

5.3 Quantitative Analysis

Before reporting the results on the downstream task analysis, we first present the standard CF metrics
which in our case can be interpreted as document completion performance. Results are shown in
Table 1 Over all metrics, we find a gain to underweighting the (un)observations, as highlighted by the
WMF and ExpoMF outperforming MF, their more primitive version. This suggests that letting the
models focus on observed words at the expense of the omitted ones facilitates the learning of good
latent representations.

Next, we present the downstream task results in Table 2. We found the shallow VAE to perform
poorly on the transfer task, their best performance being 10% which is not far from random (5%).
We hypothesize that latent code collapse is to blame in this case, i.e. a linear model has low capacity
thus it’s easy to over-regularize it with the KL term in the objective. The shallow AE (where the
pressure is removed) achieved 20%. In both data regimes, the deeper versions of the AE and VAE
performed considerably better, which is to be expected. Remarkably, WMF managed to outperform
the all deepers models and ExpoMF tied the best performing deep model in the big data regimes. The
increase in performance from MF to WMF highlight thes fact that downweighting (un)observations
is an extremely powerful tool for document modeling. Future work explores deeper versions of MF,
WMF and ExpoMF.

5.4 Qualitative Analysis of Exposure

In Figure 2, we compare ExpoMF’s inferred posteriors of the exposure matrix for a document against
the prior probability for exposure. The document class is ’computer.windows’. Interestingly, ExpoMF
learns to downweight the word ’computer’ which was omitted from the document. This is evidence
that ExpoMF can sensibly be applied to documents.

2http://qwone.com/ jason/20Newsgroups
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Low Data Big Data
1-layer AE 0.20 0.05
1-layer β-VAE 0.10 0.07
1-layer VAE 0.08 0.08
MF 0.25 0.27
WMF 0.46 0.64
ExpoMF 0.36 0.49
AE 0.42 0.12
β-VAE 0.37 0.49
VAE 0.30 0.40
Supervised MLP 0.60 0.75

Table 2: Test accuracy of the document classifier trained on the latent representations of each models.
The MF models managed to outperform both shallow and deeper versions of the NVDM in both data
regimes. Remarkably, the classifier trained on WMF representations’ performance is not so far from
the supervised MLP model.
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Figure 2: We compare the inferred posteriors of the exposure matrix for a document (denoted by black
dots) against the prior probability for exposure (blue dots). The document class is ’computer.windows’.
The word ’computer’ was omitted from the document and the model efficiently learned to downweight
this (un)observation.
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6 Discussion

In this work, we apply older and more recent CF methods to the document modeling field. Inter-
estingly, we find those methods result in more transferable representation of documents over the
popular Neural Variational Document Model [Miao et al., 2016], as highlighted by the important
gains on document classification transfer task. Future works explores deeper version of the matrix
factorization models.
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