
Wide & Deep Learning for improving Named Entity Recognition via Text-Aware
Named Entity Normalization

Ying Han1, Wei Chen1, Xiaoliang Xiong∗2,Qiang Li3, Zhen Qiu3, Tengjiao Wang1

1Key Lab of High Confidence Software Technologies (MOE), School of EECS, Peking University, Beijing, China
2School of EECS, Peking University, Beijing, China

3State Grid Information and Telecommunication Group, Beijing, China
{ying.han, pekingchenwei, xxl, tjwang}@pku.edu.cn, {qiuzhen,liqiang}@sgitg,sgcc.com.cn

Abstract

Multiple representations of the same entity often appear to-
gether in the results of named entity recognition(NER), such
as “the United States” and “the U.S.”, named entity nor-
malization(NEN) was introduced to normalize synonymy of
names to the concepts they refer to. Traditionally, NER and
NEN are conducted as a pipelined way, which ignores the rel-
evance between NER and NEN, so that the effective informa-
tion of NEN cannot be fed back to NER to help it. Inspired by
wide & deep learning in recommender systems, we proposed
a model named TANER which combined the advantages of
deep neural networks to learn implicit high-order contex-
tual features for NER, and the advantages of linear models
to memory explicit low-order textual features for NEN, thus
TANER conducted NER and NEN simultaneously, and im-
proved NER with the help of NEN. In addition, unlike other
NEN methods that rely on knowledge bases or dictionaries,
TANER is able to normalize newly defined entities in the
text. Experiments on true dataset showed that TANER sig-
nificantly improves the recall rate, and achieved promising
results compared to the state-of-the-art approaches.
KEYWORDS wide & deep, named entity recognition,
named entity normalization

Introduction
Named entity recognition(NER), which recognizes entities
with specific meaning such as names of people, places and
organizations in the text, is an essential task of information
extraction, but due to the rich expression of natural language,
the same entity concept may have variant mentions, for ex-
ample, “the United States” and “the U.S.”. These synonyms
often appear in the results of NER, which lead to informa-
tion redundancy and makes the result of NER difficult to use
directly.
In the field of natural language processing(NLP), the tra-

ditional solution to the above problem is to append the task
of named entity normalization(NEN) after the task of NER,
normalizing synonymy of names to the concepts they refer
to with the help of knowledge bases. The process of this two-
step pipelined way was shown in Figure 1(a). It has two main
drawbacks: (1) The pipelined way makes the result of NEN
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It was a special day for students at Pathways in Technology Early College High School(P-TECH). 
President Obama had come to visit the Brooklyn institution he hailed as a national model of 
technology education.           
……
“What’s going on at P-TECH is outstanding and I’m excited to see it for myself,” said Obama.
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Figure 1: separate way compared to joint learning way

cannot feedback to NER. In fact, NEN can benefit informa-
tion extraction tasks(Khalid, Jijkoun, and De Rijke 2008) (2)
NEN relies on knowledge bases cannot adapt to the situation
where the entity does not exist in knowledge bases. How-
ever, in fact, new entities often emerge in the news text.
For example, as a piece of news text shown in Figure 1,
Obama visited a Brooklyn institution named “Pathways in
Technology Early College High School”, also referred as
“P-TECH”. The traditional separate way conduct NER and
NEN in a pipeline, first NER then NEN. The state-of-the-
art NER tool-Stanford NER (Finkel, Grenager, and Manning
2005) gave the NER result in Figure 1(a), which failed to
recognize the entity “Pathways in Technology Early College
High School” and “P-TECH”, so the error propagated to the
following task NEN causing it to miss the entity. Even if
NER fortunately recognized “Pathways in Technology Early
College High School” and “P-TECH”, giving correct results
to NEN, NEN based on existing knowledge bases can’t de-
termine whether “Pathways in Technology Early College
High School” and “P-TECH” refer to the same entity when
“P-TECH” first appeared in the news that reported its estab-
lishment, because it did not exist in knowledge bases.
To address this issue, we proposed a joint learning model
named TANER that conducted NER and NEN simultane-
ously, so that the result of NEN can be feedback to NER.
Figure 1(b) shows the logic of our proposed TANER. The
NEN module of TANER learned from the text that “Path-
ways in Technology Early College High School” and “P-



TECH” are a pair of mention that refers to the same con-
cept, and shared this information with the NER module that
helps NER to extracted the two entity mentions. Inspired by
the classical method (Cheng et al. 2016) wide&deep in rec-
ommender systems, TANER combines the generalization of
deep neural networks to learn the implicit contextual fea-
tures for NER and the memorization of the linear model to
memory the explicit features for NEN, and improves NER
via text-aware NEN. The NEN module of TANER was rule-
based so that it enhanced the deep neural networks with gen-
eral knowledge, and it makes TANER can recognize and
normalize new entities from definitions in the text.
Our main contributions could be concluded as follows:

• We proposed TANER, a wide & deep model that com-
bines deep neural network and the linear model for joint
learning NER and NEN, enables improving NER via text-
aware NEN. TANER compensates for the lack of gen-
eral knowledge of deep-only model by introducing human
knowledge into a rule-based mention extractor for NEN,
and used our proposed mention vector for encoding the
result of NEN.

• We proposed a novel tagging scheme to naturally combine
the NER task and the NEN task. It enabled joint training
for the two tasks.

• We conduct experiments to validate TANER on our la-
beled financial news dataset and public CoNLL 2003
shared task English dataset. The results showed the supe-
riority of wide&deep learning. Compared with the deep-
only approaches, TANER significantly improves the re-
call rate by combining the linear model for memorizing
the information from the text-aware NEN.

Related Work
Wide & Deep
Wide & Deep(Cheng et al. 2016) as shown in Figure &eep-
fig:wide &deeps the most classical model in recommenda-
tions. It was firstly used in the Google App recommender
system and now is applied in all aspect related to recommen-
dations. It was widely welcomed in industry and academia.
The most advanced subsequent models in recommender sys-
tems such as PNN(Qu et al. 2016), DeepFM(Guo et al.
2017), DCN(Wang et al. 2017), NFM(He and Chua 2017)
etc. are all derived from this model. The core strategy of
wide & deep is to combine the strengths of memorization
and generalization. Wide linear models can eectively mem-
orize sparse feature interactions using cross-product feature
transformations, while deep neural networks can general-
ize to previously unseen feature interactions through low di-
mensional embeddings.

Although wide & deep is widely known in recommenda-
tion systems, as far as we know, it has not been used in NLP.

NER
McCallum and Li proposed conditional random field (Mc-
Callum and Li 2003) to solve sequence tagging problem
such as NER. Lample et al. introduced neural architec-
ture(Lample et al. 2016) to NER. The neural architecture

Figure 2: wide & deep model for recommendations

consisted of bidirectional LSTM and conditional random
fields. Chiu and Nichols proposed LSTM-CNNs(Chiu and
Nichols 2015) to realize character-level embedding. These
deep neural network-based methods embed words or char-
acters into high-dimensional vectors and then learn the in-
teraction of these bit-wise high-order features through deep
neural networks. These deep-only approaches only pay at-
tention to the interaction of high-order features, improve the
performance of NER by improving the design of neural net-
works, neglect the relevance of NER and other NLP tasks,
and do not learn the interaction of low-order features.

Joint learning for NER and NEN
In most cases, NER and NEN are conducted in a pipeline
as separate tasks. This separate way is simple, but ignores
the high correlation between the NEN and NEN tasks, so
that the information of the two cannot be shared. In recent
years, some scholars have tried to do joint learning of entity
recognition and entity normalization. Liu et al. joint infer-
ence entity recognition and normalization based on a fac-
tor graph(Liu et al. 2012). They introduced a binary ran-
dom variable to join NER and NEN, whose value indicates
whether the two related words across similar tweets are men-
tions of the same entity. Durrett and Klein presented a joint
model for coreference resolution, named entity recognition
and entity linking based on a structured conditional random
field(Durrett and Klein 2014). These probabilistic graph-
based methods depend on manually features and require a
lot of feature engineering work, which are lack of general-
ization.

TANER model
Overview
Our proposed model named TANER as shown in Figure 3
consisted of three main components, the wide component
for extracting mention pairs defined in the text for NEN and
encoding them to a low-dimensional vector, the deep com-
ponent for encoding implicit contextual features for NER
based on bidirectional LSTM, and the joint component for
merging the results of NER encoding and NEN encoding,
then send them to CRF layer for decoding.

The Deep component
The Deep component The Deep component consisted of a
word embedding layer and a bidirectional LSTM layer for
encoding implicit contextual features for NER. The bidirec-
tional LSTM layer consisted of a forward LSTM layer, a
backward LSTM layer and a concatenate layer to concate-
nate the logits of the forward LSTM layer and the logits
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Figure 3: The architecture of TANER

of the backward LSTM layer. The word embedding layer
converts each word(a word in English or a character in Chi-
nese) to a vector. For a textual sequence with N words, it
represented as E = [e1, ...et, et + 1, ...eN ], where et is the
embedded word vector corresponding to the tth word in the
sequence. After word embedding layer, there are two paral-
lel LSTM layers: forward LSTM layer and backward LSTM
layer. For each word et, the forward layer will encode et by
considering the contextual words information from e1 to et.
In the similar way, the backward LSTM layer will encode
et based on the contextual words information from eN to et.
The hidden output of the deep component was the concen-
trated result of the forward LSTM layer and the backward
LSTM layer, which marked as Hdeep.

The Wide component
The wide component consists of a mention pair extractor, a
mention vector and a linear layer.

Mention Pair Extractor A named entity may have vari-
ant mentions in the text. We introduced mention pair to de-
scribe it. A mention pair is a pair of entity mentions in the
text that refer to the same entity concept. As shown in Figure
1, <“Pathways in Technology Early College High School”,
“P-TECH”> is a mention pair.
In the formal texts, such as news, the non-canonical men-
tion of a named entity is usually introduced by a definition
when it first appears. These definitions have obvious pat-
terns. As shown in Figure 1, “Pathways in Technology Early
College High School(P-TECH)” is a definition which intro-
duced a mention pair <“Pathways in Technology Early Col-
lege High School”, “P-TECH”>.
The mention pair extractor was designed to extract mention
pairs defined in the text. It was rule-based. The conditions
of rules were shown in Table 1. “F” stands for the full name
and “A” stands for the abbreviation. Only patterns that sat-
isfy both syntactic and grammatical conditions are consid-
ered valid, then mention pairs extracted by the extractor. We
regarded the longer mention as the full name and the shorter
mention as the abbreviation.

Mention Vector Mention Vector was introduced as m to
embed the result of the mention pair extractor into a low-
dimensional vector. For each word in the input textual se-

Table 1: conditions used in mention pair extractor

type condition

syntactic

F(A) ; A(F)
A-F ; F-A
A, or F ; A, or F
A...stands/short/acronym...F
F, A for short

lexical A is a substring of F
F contains A except dot.

Figure 4: the meaning of each dimension of the mention vec-
tor

quence, m is a fixed-dimensional vector with a length of 7.
The meaning of each dimension of the mention vector was
shown in Figure 4.“BIES”(Begin, Inside, End, Single) was
used to represent the position information of a word in an
entity mention. “FA”(Full name, Abbreviation) has the same
meaning as above. “B-A” means the word was at the begin-
ning of the abbreviation, and ”I-F” means the word was in-
side the full name.
The initialized mental vector is a vector with each value is
0 or 1. The process of mention encoding likes one-hot. For
example, the word “Pathways” in “Pathways in Technology
Early College High School” was at the beginning of the full
name, so the mention vector of this word was represented as
[0,0,0,0,1,0,0]. If a word does not belong to any of the men-
tions in any of the mention pairs, then the mention vector of
this word was represented as [0,0,0,0,0,0,0].
For a textual sequence with N words, the mention vec-
tor of the whole sequence was represented as M . M =
[m1, ...mt,mt+1, ...mN ], where mt was the mention vector
corresponding to the tth word in the sequence.

Linear Layer The mention vector of the whole sequence
was delivered to a linear layer, The function of the linear
layer is Formula 1, where Hwide is the result of the wide
component.

Hwide = Wl ×M + bl (1)

Tagging Scheme
In traditional NER tagging scheme, the format of each
label was “Position-EntityType”, where the Position was
“BIESO”(Begin, Inside, End, Single, Outside) and the types
of entities were pre-defined, such as ORG(organization),
PER(person), LOC(location). Similarly, the format of each
label in NEN tagging scheme could be represented as
“Position-NormTag”, where the NormTag was “FAS”(full
name, abbreviation, an entity with a single mention).
To joint training the two tasks at the same time, we de-
signed a novel NERN tagging scheme, which combined the
NER tagging scheme and the NEN tagging scheme. The for-



mat if each label in NERN tagging scheme was “Position-
EntityType-NormTag”. For example, “Pathways in Tech-
nology Early College High School” is the full name of an
organization entity, so “Pathways” in this mention should be
labeled as “B-ORG-F”. If a word does not belong to any en-
tity, then it should be labeled as “O”.

The Joint Component
The joint component consists of a merge layer, a linear layer
and a CRF layer for decodingas shown in Figure 3, this lin-
ear layer was omitted in the figure for the sake of brevity.
As described in Formula 2, the result of the deep component
and the result of the wide component are concatenated by
the merge layer, and then did a dimensional transformation
via a linear layer, then Hin was got. Hin was the input of
the CRF layer.

Hin = WT × [Hdeep, Hwide] + bT (2)

For a sequence of predictions, Formula 3 defined the score
of CRF(Lafferty, McCallum, and Pereira 2001):

S(X, y) =

n∑
i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi
(3)

where A is a matrix of transition such that Ai, j represents
the score of a transition from the ith label to the jth label. y0
and yn are the start and end tags of a sequence, that we add to
the set of possible tags. P represents the unary score which
is given by Hin. A softmax over all possible tag sequences
yields a probability for the sequence y:

p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ)

(4)

During training, we maximize the log-probability of the cor-
rect tag sequence.

log(p(y|X)) = s(X, ỹ)− log(
∑
ỹ∈YX

es(X,ỹ)) (5)

Experiments
datasets
We used two datasets, one is our manually labeled dataset-
Chinese financial news dataset, which was crawled from fi-
nancial websites such as Sina financials, Daily financials,
Eastern Fortune Network, etc., then manually labeled for
NER and NEN. The entity type we defined includes two
categories, “BOND” for bonds and stocks, “ORG” for or-
ganizations. Another one is public English dataset CoNLL
2003(Tjong Kim Sang and De Meulder 2003). The details
of datasets we used were shown in Table 2.

Baseline
We used CRF(Chen et al. 2006), BiLSTM, BiLTSM-
CRF(Lample et al. 2016), BiLSTM-CNNs-CRF(Ma and
Hovy 2016) as baselines.

Table 2: Details of datasets

Data Type #sequence #Token #Mention pair

financial
news

train 225,122 6,802,737 748,301
val 25,014 750,219 78,773
test 62,534 1,883,837 201,571

CoNLL
2003

train 14,987 204,567 -
val 3,466 51,578 -
test 3,684 46,666 -

Table 3: NER results on the financial news dataset

Model Precision Recall F1
TANER 98.17% 95.83% 96.99%
BiLSTM-CRF 97.51% 91.90% 94.62%
BiLSTM-CNNs-CRF 97.18% 92.64% 94.86%
BiLSTM 91.96% 88.15% 90.01%
CRF 97.05% 80.37% 87.93%

Hyperparameters
In the financial news experiment, we trained our networks
using the back-propagation algorithm updating trained pa-
rameters on every mini batch, using Adam (Kingma and Ba
2014) with a learning rate of 0.001 and a gradient clipping
of 5.0.

We used variable embedding with 400 dimensions other
than pre-trained word embedding, so the word embedding
updates while training.

Batch size is suggested to 128. Our experiments showed
a bigger or smaller batch was worse than it.

Bidirectional LSTM cell with 300 dimensions is suitable.
We have tried two layer LSTM cell, but the results show a
single layer LSTM with bidirection was faster and got higher
performance.

Dropout is useful and necessary to make model robust and
generalized. Dropout was used twice in our model, one was
in word embedding layer, one was between the connection
of the merged result of NER and NEN encoding and the lin-
ear layer.

In the CoNLL 2003 experiment, we set the learning rate
as 0.015, set the batch size as 10 and set the dimensions of
word embedding is 120. Other settings are as same as above.

Results
We first conducted experiments on the financial news
dataset. The experiments were conducted to verify the valid-
ity of our proposed TANER and compare it to other NER-
only methods. The results of experiments on the financial
news dataset were shown in Table 3.

Then we conducted experiments on the public dataset
CoNLL 2003 shared task to verify the robustness of our pro-
posed TANER. The dataset did not have NEN annotation. In
this experiments, we used the NER tagging scheme instead
of NERN tagging scheme. In order to maintain consistency,
we used ‘BIESO” to express the position instead of ‘BIO’.



Table 4: NER results on CoNLL dataset

Model Precision Recall F1
TANER 91.14% 90.61% 90.87%
BiLSTM-CNN 87.26% 90.23% 88.72%
BiLSTM-CNNs-CRF 91.08% 90.84% 90.96%
BiLSTM 86.12% 86.27% 86.19%
CRF 90.15% 84.73% 87.36%

The results of NER on the CoNLL 2003 dataset were shown
in Table 4.

Discussions
The experiments on the financial news dataset showed that
Joint learning for NER and NEN is better than NER only.
NEN helped improve the performance of NER especially the
recall rate, which got 3.93% gain.

The experiments on the CoNLL 2003 shared task dataset
showed the robustness of TANER, the NER module of
TANER can exist independently, it worked well without the
NEN module. This experiment proved that NEN does not
disturb NER in TANER.

Inspired by the method of wide & deep learning in rec-
ommender systems, we transferred this inspiration to NLP
for the first time and proposed TANER based on the wide &
deep learning. TANER combined the generalization of deep
neural networks and the memorization of linear models to
jointly learn NER and NEN, improving NER via text-aware
NEN.

The experimental results showed that the idea of wide &
deep learning is not only suitable for recommender systems,
but also adapt to natural language processing. TANER is es-
pecially suitable for formal texts including definitions and
new entities, such as news texts. Compared with state-of-
the-art methods that rely only on deep neural networks to
learn implicit contextual features, TANER combines the ad-
vantages of memorization of linear models to memory ex-
plicit features from text-aware NEN, and thus TANER can
greatly improve the recall rate of NER result. At the same
time, even in the corpus which is lack of definitions, TANER
also achieved promising performance compared to the state-
of-the-art approaches.
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