
Next Item Recommendation with Self-Attentive Metric Learning

Shuai Zhang1, Yi Tay2, Lina Yao1, Aixin Sun2, Jake An1
1University of New South Wales, Australia

2Nanyang Technological University, Singapore
shuai.zhang@unsw.edu.au,

ytay017@e.ntu.edu.sg,

Abstract

In this paper, we propose a novel sequence-aware recommen-
dation model. Our model utilizes self-attention mechanism
to infer the item-item relationship from user’s historical in-
teractions. With self-attention, it is able to estimate the rel-
ative weights of each item in user interaction trajectories to
learn better representations for user’s transient interests. The
model is finally trained in a metric learning framework, taking
both local and global user intentions into consideration. Ex-
periments on a wide range of datasets on different domains
demonstrate that our approach outperforms the state-of-the-
art by a wide margin.

Introduction
Anticipating a user’s next interaction lives at the heart of
making personalized recommendations. The importance of
such systems cannot be overstated, especially given the ever
growing amount of data and choices that consumers are
faced with each day (Quadrana et al. 2018). Across a di-
verse plethora of domains, a wealth of historical interaction
data exists, e.g., click logs, purchase histories, views etc.,
which have, across the years, enabled many highly effective
recommender systems.

Exploiting historical data to make future predictions have
been the cornerstone of many machine learning based rec-
ommender systems. After all, it is both imperative and intu-
itive that a user’s past interactions are generally predictive of
their next. To this end, many works have leveraged upon this
structural co-occurrence, along with the rich sequential pat-
terns, to make informed decisions. Our work is concerned
with building highly effective sequential recommender sys-
tems by leveraging these auto-regressive tendencies.

This paper proposes a new neural sequential recom-
mender system where sequential representations are learned
via modeling not only user short term preferences but across
her general interests. As such our model can be considered
as a ‘local-global’ approach. Overall, our intuition manifests
in the form of a self-attentive metric embedding model that
explicitly invokes item-item interactions across user’s recent
behaviors as well as user-item interactions across all her
past activities. This not only enables us to learn global/long-

Copyright c© 2019, AAAI 2019 Workshop on Recommender Sys-
tems and Natural Language Processing.

range representations, but also short-term information be-
tween consecutive items. With self-attention, we learn to
attend over the interaction sequence to effectively select
the most relevant items to form the representation of user
short-term intentions. Our experiments show that the pro-
posed model outperforms the state-of-the-art sequential rec-
ommendation models by a wide margin, demonstrating the
effectiveness of not only modeling local dependencies but
also going global.

Our model takes the form of a metric learning framework
in which the distance between the self-attended representa-
tion of a user and the prospective (golden) item is drawn
closer during training. To the best of our knowledge, this is
the first proposed attention-based metric learning approach
in the context of sequential recommendation. To recapitu-
late, the prime contributions of this work are as follows:

• We propose a novel framework for sequential recommen-
dation task. Our model combines self-attention network
with metric embedding to model user temporary as well
as long-lasting intents.

• Our proposed framework demonstrates the utility of
explicit item-item relationships during sequence mod-
eling by achieving state-of-the-art performance across
twelve well-established benchmark datasets. Our pro-
posed model outperforms the current state-of-the-art
models (e.g., Caser, TransRec and RNN based approach)
on all datasets by large margins.

• We conduct extensive hyper-parameter and ablation stud-
ies. We study the impacts of various key hyper-parameters
and model architectures on model performance. We also
provide a qualitative visualisation of the learned attention
matrices.

Related Work
Sequence-aware Recommender Systems
In many real-world applications, user-item interactions are
recorded over time with associated timestamps. The accu-
mulated data enables modelling temporal dynamics and pro-
vides evidence for user preference refinement (Koren 2009;
Quadrana et al. 2018; Rendle et al. 2010; He and McAuley
2016a; Chen et al. 2018). Koren et al. (Koren 2009) propose
treating user and item biases as a function that changes over

time, to model both item transient popularity and user tem-
poral inclinations. Xiong et al. (Xiong et al. 2010) introduce
additional factors for time and build a Bayesian probabilistic
tensor factorization approach to model time drifting. Wu et
al. (Wu et al. 2017) use recurrent neural network to model
the temporal evolution of ratings. Nonetheless, these meth-
ods are specifically designed for the rating prediction task.

To generate personalized ranking lists, Rendle et al. (Ren-
dle et al. 2010) propose combining matrix factorization
with Markov chains for next-basket recommendation. Ma-
trix factorization can capture user’s general preference while
Markov chain is used to model the sequential behavior. He
et al. (He and McAuley 2016a) describe a sequential recom-
mendation approach which fuses similarity based methods
with Markov chain. Apart from Markov Chain, metric em-
bedding has also shown to perform well on sequence-aware
recommendation. Feng et al. (Feng et al. 2015) introduce
a Point-of-Interest recommender with metric embedding to
model personalized check-in sequences. Then, He et al. im-
prove this model by introducing the idea of translating em-
bedding (Bordes et al. 2013; He et al. 2017a). This approach
views user as the relational vector acting as the junction be-
tween items. The major advantage of using metric embed-
ding instead of matrix factorization is that it satisfies the
transitive property of inequality states (Hsieh et al. 2017;
Tay et al. 2018a).

Neural Attention Models

The neural attention mechanism shares similar intuition with
that of the visual attention found in humans. It learns to
pay attention to only the most important parts of the target,
and has been widely employed across a number of appli-
cations e.g., natural language processing and computer vi-
sion. Standard vanilla attention mechanism can be integrated
into CNN and RNN to overcome their shortcomings. Specif-
ically, attention mechanism makes it easy to memorize very
long-range dependencies in RNN, and helps CNN to con-
centrate on important parts of inputs. Several recent studies
also investigated its capability in recommendation tasks such
as hashtag recommendation (Gong and Zhang 2016), one-
class recommendation (Chen et al. 2017; He et al. 2018b;
Tay et al. 2018c; 2018b), and session based recommenda-
tion (Li et al. 2017).

Our work is concerned with a new concept known as
‘self-attention’, or ‘intra-attention’. Different from the stan-
dard vanilla attention, self-attention focuses on co-learning
and self-matching of two sequences whereby the attention
weights of one sequence is conditioned on the other se-
quence, and vice versa. It has only started to gain expo-
sure due to its recent successful application on machine
translation (Vaswani et al. 2017). It can replace RNN and
CNN in sequence learning, achieving better accuracy with
lower computation complexity. In this work, we utilize self-
attention to model dependencies and importance of user
short term behavior patterns. Note that, the usage of self-
attention in the context of recommender systems is far
from straightforward, substantially contributing to the over-
all novelty of our work.

Attention
Map su

t

N
on

lin
ea

r
La

ye
r

N
on

lin
ea

r
La

ye
r

Id
en

tit
y

M
ap

pi
ng

Sc
al

e

M
as

k Softmax

L

d

Query

X u

t

Key

Value

Q′

au

t

K′

T

Figure 1: Illustration of the self-attention module. The input
is the embedding matrix of the latest interacted L items, and
the output is the self-attentive representations.

The Proposed Model: AttRec
We now present the proposed self-attentive sequential rec-
ommendation model, named AttRec. Our model consists of
a self-attention module to model user short-term intent, and
a collaborative metric learning component to model user
long-term preference. Next, we formally define the task of
sequential recommendation.

Sequential Recommendation
Sequential recommendation is very different from tradi-
tional one-class collaborative filtering recommendation. Let
U be a set of users and I be a set of items, where |U| = M
and |I| = N . We use Hu = (Hu

1 , · · · ,Hu
|Hu|) to denote

a sequence of items in chronological order that user u has
interacted with before, where Hu v I. The objective of se-
quential recommendation is to predict the next items that the
user will interact with, given her former consumption trajec-
tory.

Short-Term Intents Modelling with Self-Attention
User recent interactions reflect user’s demands or intents in a
near term. Modelling user short-term interaction therefore is
an important task for better understanding of user’s temporal
preferences. To this end, we propose leveraging the recent
success of self-attention mechanism in capturing sequential
patterns, and use it to model user’s recent interaction trail.
Figure 1 illustrates the proposed self-attention module in our
method.

Self-Attention Module. Self-attention is an special case of
the attention mechanism and has been successfully applied
to a variety of tasks. It refines the representation by matching
a single sequence against itself. Unlike basic attention that
learns representations with limited knowledge of the whole
context, self-attention can keep the contextual sequential in-
formation and capture the relationships between elements in
the sequence, regardless of their distance. Here, we apply
self-attention to attend user’s past behaviours.

The building block of self-attention is scaled dot-product
attention. The input of the attention module consists of
query, key, and value. The output of attention is a weighted

sum of the value, where the weight matrix, or affinity ma-
trix, is determined by query and its corresponding key. In
our context, all of these three components (i.e., query, key,
and value) are the same and composed from user recent in-
teraction histories (see Figure 1).

Suppose user’s short-term intents can be derived from her
recent L (e.g., 5, 10) interactions. Assuming each item can
be represented with a d-dimension embedding vector. Let
X ∈ RN×d denote the embedding representations for the
whole item set. The latestL items (i.e., from item t−L+1 to
item t) are stacked together in sequence to get the following
matrix.

Xu
t =

X(t−L+1)1 X(t−L+1)2 . . . X(t−L+1)d

...
...

...
...

X(t−1)1 X(t−1)2 . . . X(t−1)d
Xt1 Xt2 . . . Xtd

 (1)

Here, the latest L items is a subset of Hu. Query, key, and
value for user u at time step t in the self-attention model
equal to Xu

t .
First, we project query and key to the same space through

nonlinear transformation with shared parameters.

Q′ = ReLU(Xu
t WQ) (2)

K ′ = ReLU(Xu
t WK) (3)

where WQ ∈ Rd×d = WK ∈ Rd×d are weight matrices
for query and key respectively. ReLU is used as the activa-
tion function, to introduce some non-linearity to the learned
attention. Then, the affinity matrix is calculated as follows:

sut = softmax(
Q′K ′T√

d
) (4)

The output is aL×L affinity matrix (or attention map) which
indicates the similarity among L items. Note that the

√
d is

used to scale the dot product attention. As in our case, d is
usually set to a large value (e.g., 100), so the scaling factor
could reduce the extremely small gradients effect. A mask-
ing operation (which masks the diagonal of the affinity ma-
trix) is applied before the softmax, to avoid high matching
scores between identical vectors of query and key.

Second, we keep the value equals to Xu
t unchanged. Un-

like in other cases (Vaswani et al. 2017) where value is usu-
ally mapped with linear transformations, we found that it
is beneficial to use identity mapping in our model. In other
application domains, the value is usually pretrained feature
embeddings such as word embedding or image features. In
our model, the value is made up of parameters that need to
be learned. Adding linear (or nonlinear) transformation will
increase the difficulty in seeing the actual parameters. Note
that query and key are used as auxiliary factors so that they
are not as sensitive as value to transformations.

Finally, the affinity matrix and the value are multiplied to
form the final weighted output of the self-attention module.

aut = sutX
u
t (5)

Here, the attentive output aut ∈ RL×d can be viewed as
user’s short-term intent representations. In order to learn a

Self-
Attention
Module

Mean

Short-term
Intent

Long-term
Preference

Item
Embedding

Item
Embedding

Euclidean
Distance

Euclidean
Distance

Interaction
History

Figure 2: The architecture of the self-attentive metric learn-
ing approach for sequential recommendation. This model
combine self-attention network with metric learning and
considers both user’s short-term and long-term preference.

single attentive representation, we take the mean embedding
of the L self-attention representations as user temporal in-
tent. Note that other aggregation operation (e.g., sum, max,
and min) can also be used and we will evaluate their effec-
tiveness in our experiments.

mu
t =

1

L

L∑
l=1

autl (6)

Input Embedding with Time Signals. The above attention
model does not include time signals. Without time sequen-
tial signals, the input degrades to bag of embeddings and
fails to retain the sequential patterns. Following the Trans-
former, we propose to furnish the query and key with time
information by positional embeddings. Here, we use a geo-
metric sequence of timescales to add sinusoids of different
frequencies to the input. The time embedding (TE) consists
of two sinusoidal signals defined as follows.

TE(t, 2i) = sin(t/100002i/d) (7)

TE(t, 2i+ 1) = cos(t/100002i/d) (8)

Here, t is the time step and i is the dimension. The TE is
simply added to query and key before the nonlinear transfor-
mation.

User Long-Term Preference Modelling
After modelling the short-term effects, it is beneficial to in-
corporate general tastes or long-term preference of users.
Same as latent factor approach, we assign each user and
each item a latent factor. Let U ∈ RM×d and V ∈ RN×d

denote the latent factors of users and items. We could use
dot product to model the user item interaction as in latent
factor model. However, recent studies (Hsieh et al. 2017;
Tay et al. 2018a) suggest that dot product violate the impor-
tant inequality property of metric function and will lead to

sub-optimal solutions. To avoid this problem, we adopt the
Euclidean distance to measure the closeness between item i
and user u.

‖ Uu − Vi ‖22 (9)
The distance is expected to be small if user u liked the item
i, and large otherwise.

Model Learning

Objective Function. Given the short-term attentive intents
at time step t and long-term preference, our task is to predict
the item (denoted byHu

t+1) which the user will interact with
at time step t+ 1. To keep consistency, we adopt Euclidean
distance to model both short-term and long-term effects, and
use their sum as the final recommendation score.

yut+1 = ω ‖ Uu−VHu
t+1
‖22 +(1−ω) ‖ mu

t −Xu
t+1 ‖22 (10)

In the above equation, the first term denotes the long-term
recommendation score between user u and the next item
Hu

t+1, while the second term indicates the short-term rec-
ommendation score between user u and its next item. Note
that both VHu

t+1
and Xu

t+1 are the embedding vectors for the
next item, but V and X are two different parameters. The
final score is a weighted sum of them with the controlling
factor ω.

In some cases, we may want to predict the next sev-
eral items instead of just one item. It enables our model
to capture the skip behaviours in the sequence (Tang and
Wang 2018). Let T + denote the next T items that user liked
in groundtruth. In this paper, we adopt a pairwise ranking
method to learn the model parameters. Thus we need to sam-
ple T negative items that the user does not interact with (or
dislike) and denote this set by T −. Apparently T − is sam-
pled from the set I\T +. To encourage discrimination be-
tween positive user item pair and negative user item pair, we
use the following margin-based hinge loss.

L(Θ) =
∑

(u,i)∈T +

∑
(u,j)∈T −

[yui +γ−yuj]+ +λ ‖ Θ ‖22 (11)

In the above equation, Θ = {X,V, U,WQ,WK} represents
model parameters. γ is the margin that separates the posi-
tive and negative pairs. We use `2 loss to control the model
complexity. Dropout can also be applied for nonlinear layer
of the self-attention module. Because we use Euclidean dis-
tance in our method, for sparse datasets, we could also al-
ternatively apply the norm clipping strategy to constrain
X,V, U in a unit Euclidean ball.

‖ X∗ ‖2≤ 1, ‖ V∗ ‖2≤ 1, ‖ U∗ ‖2≤ 1 (12)

This regularization approach is useful for sparse dataset to
alleviate the curse of dimensionality problem and prevent
the data points from spreading too broadly.

Optimization and Recommendation. We optimize the pro-
posed approach with adaptive gradient algorithm (Duchi et
al. 2011) which could adapt the step size automatically;
hence it reduces the efforts in learning rate tuning. In the
recommendation stage, candidature items are ranked in as-
cending order based on the recommendation score computed

by Equation (10) and the top ranked items are recommended
to users.

Since we optimize the model in a pairwise manner, the
training time complexity for each epoch is O(Kd) where K
is the number of observed interactions. Note thatK �MN
so that it can be trained efficiently. In the recommendation
stage, we compute the recommendation scores for all user
item pairs at once and generate the ranking lists with effi-
cient sort algorithms. As such, the whole process can run
very fast.

Figure 2 illustrates the architecture of our model. It in-
cludes not only user transient intents but also long-lasting
preference. Both are added up to generate the final rec-
ommendation lists. The former is inferred by self-attention
network from recent actions and the whole system is con-
structed under the metric learning framework.

Experiments
We evaluate the proposed model on a wide spectrum of real
world datasets. We then conduct detailed ablation studies. In
short, our experiments are designed to answer the following
research questions: RQ1. Does the proposed self-attentive
sequential recommendation model achieve state-of-the-art
performance? Can it deal with sparse datasets? RQ2. What
is the effect of the key hyper-parameters? For example, the
aggregation method and the length of sequence for mining
short-term intents.

Datasets Descriptions
We conduct experiments on the following datasets. All of
them include time-stamps of interactions. MovieLens: This
is a popular benchmark dataset for evaluating the perfor-
mance of recommendation models. We adopt three well-
established versions in our experiments: Movielens 100K,
Movielens HetRec and Movielens 1M. Amazon: This is a
user purchase and rating dataset collected from Amazon, a
well-known e-commerce platform, by McAuley et al. (He
and McAuley 2016b; McAuley et al. 2015). In this work,
we adopt 7 sub-categories: Android Apps, Health/Care,
Video Game, Tools/Home, Digital Music, Garden and In-
stant Video, due to limited space. textbfLastFM: This dataset
contains user tag assignments collected from last.fm online
music system1. MovieTweetings: It is obtained by scrap-
ing Twitter for well-structured tweets for movie ratings. This
dataset is comparatively new and being updated2. The subset
we used was downloaded in December 2016.

For datasets with explicit ratings, we convert it to implicit
feedback following early studies (He et al. 2017b; Tay et
al. 2018a). For Amazon, lastFM and MovieTweetings, we
perform a modest filtering similar to (Rendle et al. 2010;
Wang et al. 2015; Feng et al. 2015; He et al. 2017a; Tang and
Wang 2018) to discard users with fewer than 10 associated
actions and remove cold-start items. This is a common pre-
process to reduce the noise of cold start issue as it is usually
addressed separately (Tang and Wang 2018). Detail statistics

1http://www.lastfm.com
2https://github.com/sidooms/MovieTweetings

Table 1: Statistics of the datasets used in experiments.

Dataset #Users #Items #Interactions Density #actions/ user Time Interval

ML-100K 943 1,682 100,000 6.30% 106.04 Sept/1997 - Apr/1998
ML-HetRec 2,113 10,109 855,598 4.01% 404.92 Sept/1997 - Jan/2009

ML-1M 6,040 3,706 1,000,209 4.46% 165.57 Apr/2000 - Mar/2003
Android App 21,309 19,256 358,877 0.087% 16.84 Mar/2010 - Jul/2014
Health / Care 11,588 31,709 211,284 0.058% 18.23 Dec/2000 - Jul/2014
Video Game 7,220 16,334 140,307 0.119% 19.43 Nov/1999 - Jul/2014
Tools / Home 5,855 23,620 96,467 0.070% 16.48 Nov/1999 - Jul/2014
Digital Music 2,893 13,183 64,320 0.169% 22.23 May/1998 - Jul/2014

Garden 1,036 4,900 15,576 0.307% 15.03 Apr/2000 - Jul/2014
Instant Video 1,000 3,296 15,849 0.481% 15.85 Aug/2000 - Jul/2014

LastFM 951 12,113 83,382 0.724% 87.68 Aug/2005 - May/2011
MovieTweetings 9,608 14,220 461,970 0.338% 48.08 Mar/2013 - Dec/2016

of the datasets are presented in Table 1. It shows Movielens
datasets are more dense than other datasets.

Evaluation Metrics
For each user, we use the most recent item for test and the
second most recent item for hyper-parameter tuning. We
evaluate the performance of all the models with hit ratio and
mean reciprocal rank (MRR). Hit ratio measures the accu-
racy of the recommendation. We report the hit ratio with cut
off value 50, defined as follows:

HR@50 =
1

M

∑
u∈U

1(Ru,gu ≤ 50) (13)

Here, gu is the item that user u interacted with at the most
recent time step. Ru,gu is the rank generated by the model
for this groundtruth item. If a model ranks gu among the top
50, the indicator function will return 1, otherwise 0.

Mean Reciprocal Rank indicates how well the model rank
the item. Intuitively, ranking the groundtruth item higher is
more preferable in practice. The definition of MRR is as fol-
lows:

MRR =
1

M

∑
u∈U

1

Ru,gu

(14)

Ru,gu is the rank for groundtruth item. MRR cares about the
position of the groundtruth item and calculates the reciprocal
of the rank at which the groundtruth item was put.

Compared Models
Our model is dubbed as AttRec which can be considered as
the abbreviation of “attentive recommendation”. We com-
pare AttRec with classic methods as well as recent state-of-
the-art models. Specifically, the following baseline models
are evaluated.

• BPRMF (Rendle et al. 2009). It optimizes the matrix fac-
torization in a pairwise manner with Bayesian Personal-
ized Ranking loss, which aims to maximize the difference
between positive and negative items. It does not model the
sequential signals.

• FMC. This is a simplified version of factorized personal-
ized Markov Chain (FPMC) (Rendle et al. 2010) which
does not include user personalized behaviours.

• FPMC (Rendle et al. 2010). This approach combines
matrix factorization machine with Markov Chain for
next item recommendations. The proposed approach cap-
tures both user-item preferences and user sequential be-
haviours.

• HRM (Wang et al. 2015). It is a Hierarchical Represen-
tation Model which captures both sequential and general
user tastes by introducing both linear and nonlinear pool-
ing operation for historical transaction aggregation. Here,
the average aggregation is adopted.

• PRME (Feng et al. 2015). This model was originally pro-
posed for POI recommendation. It utilizes metric embed-
ding to learn user and item embeddings as well as the user
check-in sequences.

• TransRec (He et al. 2018a; 2017a). This model applies
the idea of translating embeddings (Bordes et al. 2013)
to sequential recommendation. It views users as relation
vectors and assumes that the next item is determined by
user’s recent interacted item plus the user relation vectors.

• Caser (Tang and Wang 2018). It models user past histori-
cal interactions with both hierarchical and vertical convo-
lutional neural networks. It also considers the skip behav-
iors and the whole network is optimized by minimizing
the cross entropy.

• LSTM+. To verify the efficacy of self-attention over
RNN, we further design a variant of AttRec by re-
placing the self-attention module with LSTM (we also
tested GRU, it turned out that LSTM slightly outperforms
GRU).

Among all of these baselines, Caser and HRM are neural
network based approach. PRME and TransRec are metric
embedding based algorithms. Note that, in our experiments,
we do not use pre-train for all models.

Table 2: Performance comparison in terms of hit ratio and MRR on all datasets. Best performance is in boldface.

Dataset Metric BPRMF MC FPMC HRM PRME TransRec Caser LSTM+ AttRec

ML-100K HR@50 0.3754 0.4115 0.4783 0.4821 0.4411 0.4634 0.4667 0.4867 0.5273
MRR 0.0616 0.0662 0.0925 0.0889 0.0837 0.0827 0.0799 0.0856 0.0981

ML-HetRec HR@50 0.1462 0.1903 0.2321 0.2380 0.2357 0.1912 0.2144 0.2376 0.2964
MRR 0.0215 0.0359 0.0489 0.0486 0.0500 0.0337 0.0387 0.0414 0.0592

ML-1M HR@50 0.2378 0.3419 0.4209 0.4311 0.4449 0.3358 0.4811 0.4776 0.5223
MRR 0.0368 0.0654 0.1022 0.0873 0.1044 0.0561 0.0925 0.0961 0.1172

Android App HR@50 0.1738 0.1802 0.1990 0.2001 0.1686 0.2016 0.1426 0.1684 0.2187
MRR 0.0287 0.0355 0.0355 0.0295 0.0237 0.0306 0.0231 0.0275 0.0415

Health / Care HR@50 0.0900 0.0786 0.1128 0.0965 0.0843 0.0962 0.0768 0.0756 0.1272
MRR 0.0188 0.0245 0.0258 0.0183 0.0119 0.0232 0.0146 0.0142 0.0277

Video Game HR@50 0.1630 0.1708 0.2226 0.2150 0.1855 0.2035 0.1438 0.1576 0.2414
MRR 0.0277 0.0381 0.0451 0.0337 0.0263 0.0349 0.0248 0.0279 0.0496

Tools / Home HR@50 0.0559 0.0384 0.0535 0.0488 0.0465 0.0658 0.0424 0.0550 0.0775
MRR 0.0099 0.0093 0.0129 0.0086 0.0076 0.0112 0.0071 0.0121 0.0148

Digital Music HR@50 0.1621 0.1307 0.1580 0.1998 0.1559 0.1894 0.1327 0.1324 0.2205
MRR 0.0277 0.0320 0.0322 0.0310 0.0243 0.0300 0.0228 0.0240 0.0467

Garden HR@50 0.0965 0.0946 0.1525 0.1593 0.1573 0.1486 0.1632 0.1727 0.2177
MRR 0.0105 0.0333 0.0408 0.0255 0.0266 0.0257 0.0277 0.0304 0.0459

Instant Video HR@50 0.2350 0.1650 0.2120 0.2430 0.1910 0.2570 0.1620 0.2020 0.2790
MRR 0.0376 0.0426 0.0541 0.0414 0.0367 0.0441 0.0275 0.0351 0.0634

LastFM HR@50 0.3659 0.1682 0.2808 0.3733 0.2503 0.3785 0.1756 0.0914 0.3901
MRR 0.1062 0.0645 0.0869 0.1209 0.1276 0.1147 0.0343 0.0141 0.1312

MovieTweetings HR@50 0.1749 0.3314 0.3417 0.3105 0.3286 0.2755 0.3332 0.3401 0.3602
MRR 0.0231 0.0700 0.0674 0.0534 0.0476 0.0421 0.0585 0.0612 0.0811

Implementation Details
The former seven baselines were implemented in C++ based
on (He et al. 2017a). We implemented Caser and our model
with Tensorflow3. All experiments were conducted on a
NVIDIA TITAN X Pascal GPU. For all baselines, Hyper-
parameters are tuned with grid search with validation set.

Since we adopt adaptive gradient optimizer for AttRec,
the learning rate of AttRec for all datasets is set to 0.05 with-
out further tuning. The number of latent dimensions d of
all latent vectors (U, V,X) of AttRec and all other baselines
(if exists.) is set to 100 for fair comparison. Note that the
impact of d is also discussed in the following section. Due
to the high sparsity of Amazon, LastFm and Movietweet-
ings datasets, we use norm clipping to replace the `2 regu-
larization for X,V, U . Weight matrices of nonlinear layer in
self-attention module are regularized with `2 norm. Regular-
ization rate λ is tuned amongst {0.1, 0.01, 0.001, 0.0001}.
Dropout rate is tuned amongst {0, 0.3, 0.5, 0.7}. The weight
factor ω is tuned amongst {0, 0.2, 0.4, 0.6, 0.8, 1.0}. The
length of sequence L is set to 5 for Movielens, 3 for Movi-
eTweetings, and 2 for all other datasets. The target length
T is set to 3 for Movielens and 1 for all other datasets. The

3https://www.tensorflow.org/

margin γ of hinge loss is fixed to 0.5 for all datasets.

Performance Comparison
Table 2 reports the experimental results of the 8 baselines
and our model on 12 benchmark datasets. Observe that At-
tRec always achieve the best performance on all datasets.
This ascertains the effectiveness of the proposed approach.
Notably, the performance gains over the strongest baselines
is reasonably large in terms of both prediction accuracy
and ranking quality. Our model performs well not only on
dense datasets like Movielens but also on sparse datasets
such as Amazon or MovieTweetings. The sequential inten-
sity of sparse datasets is usually much lower than that of
dense datasets.

Additionally, we make several observations on the com-
parison baselines. Markov Chain based models (FPMC and
MC) achieve consistent performance on both dense and
sparse data. TransRec and PRME, on the other hand, seems
to be underperforming on some datasets. One important as-
sumption of PRME and TransRec is that user’s next item is
only influenced by her latest action. This assumption might
hold on sparse data as the interactions are extremely discrete
along time but may not hold when user interacts with the
system frequently. TransRec overcomes this shortcoming to

Table 3: HR@50 of AttRec with and without Self-Attention.

Dataset 100K 1M Garden Music

w/ Self-Att 0.5273 0.5223 0.2177 0.2205
w/o Self-Att 0.5015 0.5045 0.2026 0.2022

(a) User ID: 538 (Male) (b) User ID: 888 (Male)

Figure 3: Attention weights of two randomly selected users
for prediction. The color scale represents the strength of the
attention weights. Item information is not listed due to lim-
ited space. (Best viewed in color.)

some extent by introducing user specific relation vectors as
intermediary. This claim can be demonstrated by HRM as it
usually outperforms PRME, and their is no clear winner be-
tween HRM and TransRec. Caser achieves satisfactory per-
formance on Movielens and MovieTweetings, but performs
poorly on sparse datasets. In addition, our model also outper-
forms LSTM+ largely. As a final recapitulation, AttRec con-
sistently outperforms all baselines by a wide margin, which
clearly answers RQ1.

Model Analysis and Discussion
In this section, we dive into an in-depth model analysis, aim-
ing to further understand behaviour of our model to answer
the RQ2.

Impact of Self-Attention. Although we can infer the effi-
cacy of self-attention implicitly from Table 2, we would like
to verify the effectiveness of the self-attention mechanism
explicitly. We remove the self-attention module from At-
tRec and replace mu

t with the mean of Xu
t , that is: mu

t =
1
L

∑L
l=1X

u
tl.

Table 3 shows the comparison between with and without
self-attention. We observe that with self-attention indeed im-
proves the performance. From both Tables 2 and Table 3, we
find that even without self-attention, our model can still beat
all baselines on these four datasets. This also justifies the
method we use for preference modelling. Furthermore, in
order to study the effect of self-attention, we visualize the
self-attention matrix on Movielens 100K in Figure 3.

We make two observations from the results. First, the at-
tention matrix is column distinguishable even they are unin-
tentionally trained to achieve this. Each column represents
the importance and weight for the corresponding action. In-
tuitively, the self-attention matrix allows us to inspect how
much an action contributes to the overall short-term intent

Table 4: HR@50 of AttRec with different aggregation meth-
ods.

Dataset ML-100K ML-1M Garden Digit Music

Mean 0.5273 0.5223 0.2177 0.2205
Sum 0.4883 0.5201 0.2046 0.1908
Max 0.5254 0.5229 0.1892 0.1925
Min 0.5244 0.5267 0.1525 0.1548

(a) Effects of the weight ω (b) Effects of the sequence
length L

Figure 4: Effects of the weight ω and effects of the sequence
length L on four datasets.

representation. Second, AttRec will not simply put more
emphasis on recent actions, but learns to attend over pre-
vious actions with different weights automatically. For ex-
ample, the most recent items are given higher weights for
user “888”, while higher weights are assigned to the first
and fourth items for user “538”. Evidently, analyzing the at-
tention weights could lead to benefits in interpretability.

Impact of Aggregation Method. As aforementioned, we
can use different aggregation strategies to get the representa-
tion of user short-term intents. Here, we explored four types
of strategies to check their suitability. Table 4 shows the re-
sults of using different aggregation methods. We observe
that “mean” achieves desirable performance on both sparse
and dense datasets. The other three aggregation methods
seem to be underperforming especially on sparse datasets.
This is reasonable as mu

t shall influence the embedding of
the next item (Xu

t+1). Using mean aggregation could retain
more information.

Impact of weight ω. The parameter ω controls the contribu-
tion of short-term and long-term effects. Observe from Fig-
ure 4a, considering only short term intents (ω = 0) usually
get better performance than considering only long-term pref-
erence (ω = 1.0). Setting ω to a value between 0.2 and 0.4 is
more preferable, which also indicates that short-term intent
play a more important role in sequential recommendation.
Additionally, the impact of ω also reflects the strength of se-
quential signal in the datasets. Datasets with higher sequen-
tial signal (dense datasets such as Movielens, detail sequen-
tial intensity evaluation can be found in (Tang and Wang
2018)) hit their best performance with a lower ω value.

Impact of sequence length L. Figure 4b shows the impact
of the sequence length L. We observe that the proper L is

(a) Movielens 100K (b) Amazon Garden

Figure 5: HR@50 (y-axis) vs. the number of latent dimen-
sions (x-axis) on Movielens 100K and Amazon Garden.

Table 5: Runtime comparison (second/epoch) between At-
tRec and Caser on four datasets.

Dataset ML-100K ML-1M Garden Digit Music

AttRec 1.315 15.429 0.169 1.525
Caser 1.309 15.328 0.120 0.956

highly dependent on the density of datasets. On MovieLens
datasets where average number of actions per user is greater
than a hundred, setting L to a larger value is beneficial to
the performance. However, L should be set to a small value
on sparse datasets, which is reasonable as increasing L will
results in training sample decrease. Note that self-attention
is capable of drawing dependencies between distant posi-
tions (Vaswani et al. 2017), which theoretically allows learn-
ing on very lengthy sequence.

Impact of Number of Latent Dimensions. Figure 5 shows
the HR@50 for various dwhile keeping other optimal hyper-
parameters unchanged. We make three observations from
this figure. First, our model consistently outperforms all
other baselines on all latent dimensions. Secondly, a larger
latent dimension does not necessarily leads to better model
performance. Overfitting could be a possible reason. Third,
some models such as MC and Caser perform unstably, which
might limit their usefulness.

Model Efficiency. Table 5 shows the runtime comparison
with Caser. Other baselines are not listed here as the imple-
mentation cannot leverage the computation power of GPU.
Experiments were run with batch size of 1000 on a NVIDIA
TITAN X Pascal GPU. We observe that AttRec only incurs
a small computational cost over Caser. This cost might be
caused by the use of dual embedding and Euclidean dis-
tance calculation. Since both Caser and AttRec are trained
in a pairwise manner, the difference in convergence speed is
subtle. For example, it takes fewer than 30 epochs for AttRec
to achieve its best performance on Movielens 100K.

Conclusion
In this paper, we proposed AttRec, a novel self-attention
based metric learning approach for sequential recommenda-
tion. Our model incorporates both user short-term intent and

long-term preference to predict her next actions. It utilizes
the self-attention to learn user’s short-term intents from her
recent actions. Analysis shows that AttRec could accurately
capture the importance of user recent actions. In addition,
we generalize self attention mechanism into metric learning
methodology for sequence prediction task, which has good
effectiveness on sequential recommendation.

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
and et al. Translating embeddings for modeling multi-
relational data. In NIPS, pages 2787–2795, 2013.
Jingyuan Chen, Hanwang Zhang, Xiangnan He, and et al.
Attentive collaborative filtering: Multimedia recommenda-
tion with item-and component-level attention. In SIGIR,
pages 335–344. ACM, 2017.
Xu Chen, Hongteng Xu, Yongfeng Zhang, and et al. Se-
quential recommendation with user memory networks. In
WSDM, pages 108–116. ACM, 2018.
John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.
Shanshan Feng, Xutao Li, Yifeng Zeng, and et al. Personal-
ized ranking metric embedding for next new poi recommen-
dation. In IJCAI, IJCAI’15, pages 2069–2075. AAAI Press,
2015.
Yuyun Gong and Qi Zhang. Hashtag recommendation us-
ing attention-based convolutional neural network. In IJCAI,
pages 2782–2788, 2016.
Ruining He and Julian McAuley. Fusing similarity models
with markov chains for sparse sequential recommendation.
In ICDM, pages 191–200. IEEE, 2016.
Ruining He and Julian McAuley. Ups and downs: Modeling
the visual evolution of fashion trends with one-class collab-
orative filtering. In WWW, pages 507–517, 2016.
Ruining He, Wang-Cheng Kang, and Julian McAuley.
Translation-based recommendation. In RecSys, pages 161–
169. ACM, 2017.
Xiangnan He, Lizi Liao, Hanwang Zhang, and et al. Neural
collaborative filtering. In WWW, pages 173–182, 2017.
Ruining He, Wang-Cheng Kang, and Julian McAuley.
Translation-based recommendation: A scalable method for
modeling sequential behavior. In IJCAI, pages 5264–5268,
2018.
X. He, Z. He, J. Song, and et al. Nais: Neural attentive item
similarity model for recommendation. TKDE, pages 1–1,
2018.
Cheng-Kang Hsieh, Longqi Yang, Yin Cui, and et al. Col-
laborative metric learning. In WWW, pages 193–201, 2017.
Yehuda Koren. Collaborative filtering with temporal dynam-
ics. In SIGKDD, pages 447–456. ACM, 2009.
Jing Li, Pengjie Ren, Zhumin Chen, and et al. Neural atten-
tive session-based recommendation. In CIKM, pages 1419–
1428. ACM, 2017.

Julian McAuley, Christopher Targett, and et al. Image-based
recommendations on styles and substitutes. In SIGIR, pages
43–52. ACM, 2015.
Massimo Quadrana, Paolo Cremonesi, and Dietmar Jan-
nach. Sequence-aware recommender systems. arXiv
preprint arXiv:1802.08452, 2018.
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and
et al. Bpr: Bayesian personalized ranking from implicit feed-
back. In UAI, pages 452–461. AUAI Press, 2009.
Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Factorizing personalized markov chains for next-
basket recommendation. In WWW, pages 811–820. ACM,
2010.
Jiaxi Tang and Ke Wang. Personalized top-n sequential rec-
ommendation via convolutional sequence embedding. In
WSDM, pages 565–573. ACM, 2018.
Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent rela-
tional metric learning via memory-based attention for col-
laborative ranking. In WWW, pages 729–739, 2018.
Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Cou-
plenet: Paying attention to couples with coupled atten-
tion for relationship recommendation. arXiv preprint
arXiv:1805.11535, 2018.
Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Multi-pointer
co-attention networks for recommendation. arXiv preprint
arXiv:1801.09251, 2018.
Ashish Vaswani, Noam Shazeer, Niki Parmar, and et al. At-
tention is all you need. In NIPS, pages 5998–6008, 2017.
Pengfei Wang, Jiafeng Guo, Yanyan Lan, and et al. Learn-
ing hierarchical representation model for next basket recom-
mendation. In SIGIR, pages 403–412. ACM, 2015.
Chao-Yuan Wu, Amr Ahmed, Alex Beutel, and et al. Re-
current recommender networks. In WSDM, pages 495–503.
ACM, 2017.
Liang Xiong, Xi Chen, Tzu-Kuo Huang, and et al. Temporal
collaborative filtering with bayesian probabilistic tensor fac-
torization. In Proceedings of the 2010 SIAM International
Conference on Data Mining, pages 211–222. SIAM, 2010.

