
Attention based Term Weighting for App Retrieval

Lianzhi Tan Junjie Lin Shengping Zhou∗

Platform and Content Group, Tencent
Hans Laser Technology Centre , Shennan Ave No.9988,

Nanshan District, Shenzhen City, Guangdong Province, 518057, China
{lianzhitan,alexjjlin,poissonzhou}@tencent.com

Abstract

App retrieval aims to select and rank relevant mobile apps to
the textual queries users input, which is the key function for
app search engines. As the terms in a query often play dif-
ferent roles in app retrieval, many term weighting schemes
have been proposed to distinguish the importance of differ-
ent terms in the query. However, most current term weighting
schemes leverage only literal statistics information in texts,
while neglecting user intentions implied in queries. Consid-
ering that the category of apps can reflect users’ search inten-
tion to some extend, this paper proposes an attention based
GRU-RNN network to learn the weight of each term by train-
ing on the data app category label. To the best of our knowl-
edge, we are among the first to use attention-based deep net-
works to learn term weights for app retrieval. Experimental
results show the effectiveness of our method, which achieves
a 3.5% better nDCG@10 than baselines.

Introduction
App retrieval (also called app search) is a typical information
retrieval task, which selects and ranks relevant apps from a
large set of candidates according to the textual queries users
input. Query understanding targets at identifying users’ in-
tention from searching more effective retrieval, thus can im-
prove a user’s search experience and boost a site’s advertis-
ing profits. In the field of query understanding, term weight-
ing is a fundamental task which aims to recognize impor-
tant terms in retrieval. For example, users may input a query
in an app retrieval engine: ”download a game suitable for
female playing.” In order to achieve a better understanding
of this query, the search engine needs to weight the input
terms differently. Apparently, the weights of ’female’ and
’game’ should be larger than those of other terms. What’s
more, considering that the single term ”game” may incur ir-
relevant apps (e.g., ”competitive games”), the weight of ”fe-
male” should be larger than that of ”game”. As shown in
Figure 1, term weights indicate the importance of different
terms in the query, and can be used for retrieving relevant
terms.

In the literature, different term weighting schemes have
been proposed in text retrieval, such as TF-IDF and its vari-

∗Corresponding author.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example term weighting of query in app retrieval.

ant schemes (Beel, Langer, and Gipp 2017; Shirakawa,
Hara, and Nishio 2015; G. Salton and Yang 1975; Chen
et al. 2016; Soucy and Mineau 2005), part-of-speech tag-
ging (Lioma and van Rijsbergen 2008; Lioma and Blanco
2017) and dependency parsing(Park and Croft 2010). Taking
into account term weights in query, the related works pro-
pose many retrieval functions based on text similarity, such
as, BM25 and TF-IDF based cosine similarity. BM25 (Svore
and Burges 2009) is arguably one of the most widely used
information retrieval functions. Structurally, BM25 and TF-
IDF based functions are very similar (in the sense that they
both consider term frequency and document frequency),
however, they differ in many aspects. Firstly, BM25 is based
on a well grounded theory, while the TF-IDF based schemes
incline to an empirical background (Paik 2015). Secondly,
unlike TF-IDF, BM25 uses a nonlinear query term frequency
function (Paik 2015). Thirdly, BM25 is based on the stan-
dard IDF factor but it discounts the collection size by the
document frequency of the term (Paik 2015). Approaches
based on part-of-speech tagging and dependency parsing
are limited to natural language queries, for which syntac-
tic analysis of the query is feasible and reliable (Carmel et
al. 2014a).

Beside these statistical linguistic analysis methods, term
weighting essentially can be viewed as a classification prob-
lem (Qiu, Bao, and Shao 2013). Unfortunately, data labeling
can be a huge project that costs human works. As app cat-
egories can reflect users’ search intentions to some extent,
and inspired the previous work of (Jin, Chai, and Si 2005)
that learns term weights based on the correlation between
word frequency and category information of documents, this
paper takes app category as label and applies attention mech-
anism to learn term weights.

The contribution of this paper can be summarized as fol-
lows:
a).This paper is among the first to leverage a deep network
for term weighting to improve the performance of app re-



trieval. Although the attention based Bi-LSTM method is
also proposed in the paper (Luo, Gong, and Chen 2018) for
learning the central intention of user. The main goal of this
method is inconsistent with ours, and the final performance
on retrieval is unknown.
b).For app retrieval, the objectives of app category classi-
fication and term weighting is close. Therefore, this paper
proposes the attention based GRU-RNN mechanism to learn
term weights by training on the labeled data of app category
classification. In case of lacking labeling of term weighting,
our method has practical implications.
c).Finally, our method improve the performance of ranking
metrics, such as nDCG@10, by 3.5% on app retrieval.

The remainder of this paper is organized as follows.
Section II reviews the related works on term weighting
schemes and app retrieval. Section III comprehensively
introduces our method about term weighting based on
attention mechanism. Section IV introduces data sets and
experiments. Section V concludes this paper.

Related Works
2.1 Term Weighting Schemes for Information
Retrieval
In most information retrieval tasks, a user’s query is com-
prised of multiple terms. Distinct terms in the query con-
tribute differently to retrieving relevant documents. Thus,
term weighting schemes are commonly used in information
retrieval models to assign an importance weight to each dis-
tinct term in the query.

TF-IDF model is one of the most widely used term
weighting scheme. In TF-IDF model, the weight of a term
is determined by the times it occurs in the query (i.e.
term frequency, TF) as well as its inversed document fre-
quency (i.e. IDF). A term is considered to be informa-
tive if it appears frequently in the query but appears rarely
in the document collection. However, the largest weights
tend to be assigned to high-frequency but less informa-
tive terms under this scheme. Besides, some work focuses
on adjusting IDF to acquire more effective term weights
(Rennie and Jaakkola 2005; Cooper, Chen, and Gey 1994;
Shirakawa, Hara, and Nishio 2015). For example, (Rennie
and Jaakkola 2005) propose Residual IDF measure, which
assigns large weights to the terms whose IDF differs from
the expected IDF significantly.

The above schemes mainly leverage literal information
for term weighting. To integrate syntactic and semantic in-
formation into term weighting schemes, (Lioma and Blanco
2017) make use of part-of-speech (POS) n-grams to deter-
mine term weights. Based on the consideration that differ-
ent POSs have distinct contributions to information retrieval,
they propose five POS-based term weighting measures,
two of which achieve relatively good performance, namely
”pos ml weighted” and ”pos idf”. ”pos ml weighted” takes
the frequencies of POS n-grams in the document collection
to indicate how informative they are, and further uses the
POS n-gram distribution of a term for term weighting. ”pos -
idf” adopts a simpler strategy which takes the inversed fre-

quency of a term appearing in different POS n-grams as its
weight. As these two measures consider only POS informa-
tion in calculating term weights, they must be integrated into
existing term weighting schemes for effective retrieval.

In addition, manually annotated query-document pairs
are also used to predict important terms in query (Yih
2009). Other term weighting schemes consider issues
such as term frequency heuristics (Buckley et al. 1995;
Pasça 2001), users feedback (Saboori, Bashiri, and
Oroumchian 2008), and the application of machine
learning techniques (Cooper, Chen, and Gey 1994;
Lioma and Blanco 2009; Bendersky and Croft 2008;
Carmel et al. 2014b; Zheng and Callan 2015;
Yih 2009), probabilistic models (Harter 1975;
Margulis 1992) and graph-based algorithms (Arif, Rahman,
and Mukta 2009) etc. Recently (Karisani, Rahgozar, and
Oroumchian 2016) re-weight query terms according to their
importance in the top retrieved documents by initial query.

2.2 App Retrieval
App retrieval (also called app search) (Cheng et al. 2016;
Aliannejadi et al. 2018; Park et al. 2016) is the task of se-
lecting and ranking relevant apps from a large set of can-
didates according to the textual queries users input, which
can be regarded as a typical information retrieval problem.
It should be noticed that app retrieval is a similar but dif-
ferent task from app recommendation (Yin et al. 2013;
Lin et al. 2014) in terms of accepted input. App recom-
mendation algorithms often take users behaviors and the in-
formation of apps as inputs, while app retrieval focuses on
recognizing the most related apps to the input query string
based on textual information.

Most of the existing methods for app retrieval recog-
nize relevant apps by text similarity between query string
and the descriptions of apps. Among various text similarity
measures, TF-IDF based cosine similarity (Ramos and oth-
ers 2003) and BM25 (Fang, Tao, and Zhai 2004) are both
widely used and successfully applied in the field of informa-
tion retrieval. To calculate TF-IDF based cosine similarity,
queries and app descriptions are firstly represented as fixed-
sized vectors, where each dimension corresponds to a spe-
cific term in the vocabulary and dimension values are TF-
IDF term weights. Then the cosine similarity is calculated
on the above vectors to indicate the relevance of query-app
pairs. BM25 determines whether an app is relevant to the in-
put query based on the terms occurring in both app descrip-
tion and query string. To take into account the influence of
text length on similarity measurement, BM25 penalize term
frequency in long app description. BM25 determines the im-
portance of a term in retrieval by only its term frequency and
document frequency.

Considering that the terms in a text is usually interrelated,
some work incorporates language model for more effective
retrieval (Zhai and Lafferty 2017; Ponte and Croft 1998).
The Query Likelihood Language Model (QLLM) proposed
by Ponte and Croft (Ponte and Croft 1998) scores the rele-
vance of a query-document pair by the possibility that the
terms in the query are generated from the document. The



Figure 2: The proposed framework contains two parts: The GRU-RNN Network and The Weighted BM25.

latter estimator can prevent probability from being zero. To
exploit more latent semantic information, topic models are
leveraged to capture the topic relevance between query and
document (Yi and Allan 2009; Li and McCallum 2006).
For example, (Yi and Allan 2009) propose LDA-based doc-
ument model (LBDM). On the basis of this, two works by
(Park et al. 2016; 2015) make use of app reviews and users
status texts in social media respectively to strengthen LBDM
with more textual information for app retrieval.

In recent years, deep learning models have also been ap-
plied to app retrieval. (Aliannejadi et al. 2018) train a fully-
connected feed-forward network to learn the relevance score
of a query and an app. (Cheng et al. 2016) combine lin-
ear models with deep neural network to balance the mem-
orization and generalization power of the retrieval model. In
those works on app retrieval, few are related to term weight-
ing. (Luo, Gong, and Chen 2018) propose a bi-LSTM based
model to find the semantic relatedness between natural lan-
guage context words and central intention term. However,
this work only verifies the accuracy of term weighting, and
the effect on retrieval is unknown.

Proposed Method

3.1 Overall Framework

In this paper, we proposes an attention based neural network
for term weighting in app retrieval. The overall architecture
of our proposed method is shown in Figure 2. Our method
includes two parts, the attention based GRU-RNN network
and BM25 with attention-based term weights. We will dis-
cuss them in 3.2 and 3.3 respectively. As shown in Figure 2,
our proposed method works by the following steps:

Algorithm 1 Proposed Algorithm
1.Given app descriptions si containing Ti words, i ∈ [1, L].
2.Train a attention based GRU-RNN model to predict oi by
equation 1-7.
3.For a query with Qj words, calculate weights wj by the
word-level attention layer of the GRU-RNN network.
4.Rank the apps according to fusion methods of term
weighting and term frequency.
5.Score the query against each app.

3.2 Attention based GRU-RNN for Term Weighting
The proposed attention based network for term-weighting
consists of a embedding layer, a word sequence encoder, a
word-level attention layer and a soft-max layer.

The embedding layer. Assume that descriptions of a app
and a user’s query are both word sequences si that contains
Ti words. The embedding layer projects the raw app descrip-
tions or queries into a vector representation and learns a hid-
den vector for each word. After the embedding layer, we get
vectors from a sequence with words wit, t ∈ [0, Ti], through
an embedding matrix We, i.e.xij =Wewij .

The word sequence encoder layer. The word sequence
encoder layer comprises of multiple GRU cells. GRU
updates the state of a sequence by gating mechanism. At
time t, the new state of GRU is computed as

ht = (1− zt)� ht−1 + zt � h̃t. (1)

where zt represent the update gate which controls how in-
formation is updated to the new state. zt is updated as:

zt = σ(Wzxt + Uzht−1 + bz), (2)



where xt is the sequence vector at time t. The current can-
didate state h̃t is computed according to the previous state
ht−1 and current input xt, which is computed with new se-
quence information. h̃t represent the candidate state in equa-
tion 1, which is computed as

h̃t = tanh(Whxt + rt � (Uhht−1) + bh), (3)

where rt represent the reset gate, which decides how much
the candidate state should remember the past state. Specif-
ically, the previous state is forgotten completely when rt is
set to zero. rt is updated as

rt = σ(Wrxt + Urht−1 + br) (4)

In the word sequence encoder layer, we get encoding rep-
resentations of words by a bidirectional GRU (Bahdanau,
Cho, and Bengio 2014) to summarize information for words
in both directions. In the forward direction, a forward GRU−→
f reads the sequence si from wi1 to wiT . In the backward
direction, a backward GRU

←−
f which reads from wiT to

wi1. The bidirectional GRU is denoted as

xit =Wewit, t ∈ [1, T ],
−→
h it =

−−−→
GRU(xit), t ∈ [1, T ],

←−
h it =

←−−−
GRU(xit), t ∈ [T, 1].

(5)

where
−→
h it represent the forward hidden state and

←−
h it repre-

sent the backward hidden state. By concatenating the hidden
state,i.e.,hit = [

−→
h it,
←−
h it], we get summary of the whole

sequence centered around wit.

The word-level attention layer. The word-level attention
layer provide weights of each word for classification. Con-
sidering that words of a sequence contribute differently to
the meaning of the sequence, we use a word-level atten-
tion layer to learn weight terms that reflect the importance
of each word in the sequence. The weighted sum of word
representations are used to words forms a sequence vector,
which is denoted as,

uit = tanh(Wwhit + bw)

αit =
exp(uTituw)∑
t exp(u

T
ituw)

si =
∑
t

αithit.

(6)

where uit is a hidden representation of the word encoding
representation hit, αit represents the normalized importance
weight of each word. uw is a word level context vector,
which is initialized randomly and changed in procession of
training. si indicates the sum of the weighted word encoding
representation.

The softmax layer. The final softmax layer classify the se-
quence vector si to improve the performance of app category
classification. The output probability oi of si is

oi =
exp(si)∑
i exp(si)

(7)

3.3 BM25 with Attention-based Term Weights
We score a app against a query based on text similarity
between query and app descriptions. We first define all
the unstructured app descriptions as a collection C. Each
text d is defined as a vector (d1, d2, d3, ...dV ) where di
denotes term frequency of the ith term in d and V is the
total number of terms in the vocabulary. The commonly
used ranking functions BM25 defines a term weighting
function W (d, q, C) which exploits term frequency as well
as other factors such as the app descriptions’ length and
collection statistics. For app retrieval, taking average term
frequency into consideration, the standard BM25 function
can be simplified to:

W (d, q, C) =∑
i∈q

(k1 + 1)di

k1((1− b) + b dl
avdl ) + di

log
N − dfi + 0.5

dfi + 0.5 (8)

where dfi is the frequency of term i in app description.
avdl is the average length of app descriptions across the
collection, and k1 and b are hyper-parameters.

di = di ∗ wi (9)
The weight of each termwi in the app description or query

is acquired by the attention based GRU-RNN network. Our
method re-weights di by multiplying it to wi, which is de-
noted in equation 9.

Experiment
Datasets Carefully, we choose an app retrieval dataset that
contains label of app category information, descriptions, and
scores of query to top-10 app lists (Park et al. 2015). In
Google Play app store, each app is assigned with one cat-
egory only and there are 41 categories in total. Completely,
there are 43,041 app descriptions (one description per app)
are crawled, in which the average number of tokens is 94.1
and the total number of tokens is 4,051,366.

nDCG Measure The nDCG (Normalized Discounted
Cummulative Gain) is a typical IR evaluation measure,
which is based on DCG. DCG discountedly accumulates
the scores of each recommendation result relevance as the
score of the entire recommendation app lists. Given a app
lists of k retrieval depth, the evaluation of DCG is

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
(10)

where reli is the relevance score of ith recommended app
for query. The nDCG is computed over a set of queries by
taking the arithmetic mean of the nDCG values of all the
individual queries. The evaluation of nDCG is

nDCG@k =
DCG@k

IDCG@k
(11)

where IDCG(Ideal DCG) means a list of ideal retrieval re-
sults, where the returned results are sorted by relevance, and
the most relevant result is placed first.



query example top-10 app names app descriptions
com.mango.findmyphone if you lose your phone , just send it a text message and

find my phone will reply to you with its current address ,
and a google maps link to your phone ’s location.

com.Socialize.PinkMessenger please rate and comment socialize for facebook mes-
senger features send and receive messages through your
facebook account.

com.tapixel.wireless.transferapp send photo and video to another android phone tablet, just
a few clicks and you are transferring files.

com.lookout.labs.planb it will use mobile-originated sms messages to send your
location to your email address.

text
messenger
my phone to
my tablet

com.apdroid.tabtalk tablet talk is a tablet sms texting app that lets you text
from a tablet and even make voice calls , while your
phone stays in your pocket!

biz.digitalshowcase.mycrapsgame.at142 tablets is almost exactly the same software as the ipad
version.

com.drippler.android.updates love the new tablet app! drippler is like an android assis-
tant or a user guide built specifically for my tablet

com.zoemob.calltracker zoemob family mobile tracker are sending or receiving
bullying and sexting messages

com.wyse.pocketcloudfree This app is just brilliant. took me 3 minutes to install,
connect and manage my remote windows 2008 server,
without once referring to any of the documentation

com.platinumapps.facedroid you can also manage your facebook pages, groups, mes-
sages and chat with friends in real-time. and you can
share new photos, a status update or check-in – all with-
out launching the full application, so you’ll enjoy faster
sharing from your android-powered phone or tablet

com.np.comvigo email address is your userid and password you will need
email to login after installing after installing configure
settings from your computer.

com.miragestack.smart.phone.lock If anyone tries to unlock your mobile with wrong pass-
word. The app is password protected , you can access the
app only after entering the default pin which you have set
during installation.

com.nyxbull.nswallet embedded password generator can be used to produce
highly secure passwords.

com.callpod.android apps.keeper Keeper’s password generator creates high-strength pass-
words for your different websites , which is the best way
to protect your privacy.

best free
internet based
password
saving app

com.reneph.passwordsafe password safe is your solution! it stores and manages all
entered data in an encrypted way , so you have a secure
storage of your access data and only have to remind your
master password.

com.aed.droidvpn Enter the email that you registered and the password that
is sent to you

com.passwordbox.passwordbox Passwordbox is a free password manager that allows
users to securely store , retrieve and share usernames ,
passwords and other personal data anytime.

com.jagerinc.usagemonitor A password is required to toggle this setting so only you
will have access to it . remember to store the password
created in a safe place.

secureauth.android.token You can start using your one-time password generator to
gain access to your protected resources.

com.osmino.wifil You can also share the password to a known wi-fi network
and make it available to other osmino wi-fi users.

Table 1: The top-10 apps of example queries got by the proposed model.



Experimental settings The initial learning rate of our pro-
posed attention based GRU-RNN network is set to 0.001.
The batch size is set to 32 and dropout rate is set to 0.8. Vo-
cabulary size of queries is 5000. The embedding layer learns
a 100-dimensional vector for each word. Sequence length
of the word sequence encoder layer is 100. The word-level
attention layer learns a 128 dimensional hidden representa-
tion. Number of epochs is set to 20 during the training pro-
cess.

Comparison with Baseline Methods The experimental
results are shown in Table 2. Our proposed weighting
method outperforms the BM25 baseline method by 3.5% in
terms of nDCG@10. We also compare the retrieval results
calculated with the term weights initialized randomly. It can
be seen that our method performs much better than BM25
with random weights.

Method nDCG@10
Baseline(BM25) 74%

BM25+Random Weights 75%
Propose method 77.5%

Table 2: Experimental results of our model and baselines.

Comparison with State-of-the-art Methods We further
investigate the effectiveness of our method compared with
some state-of-the-art methods. As shown in Table 3. TF-
IDF and POS tagging is proved to be effective in solving
the problem of term weight in work (Chen et al. 2016) and
(Lioma and Blanco 2017). In the experiment, we retest the
method of TF-IDF and postagging which achieve 73% and
65% in nDCG@10 respectively. Experiment results show
that the TF-IDF and postagging methods have the similar
effect to the BM25 without term weighting. Our method
weights terms by the attention layer of a deep network,
learning the importance from app category labels, and thus
improve the quality of the retrieved app list.

Method nDCG@10
BM25 74%

TF-IDF 73%
POS-tagging 65.3%

Propose method 77.5%

Table 3: Experimental results of our method and state-of-
the-art methods.

Case Study
In Table 1, we take query ”text messenger my phone to
my tablet” and ”best free internet based password saving
app” as examples to show some real cases of query result
of top 10 app lists. For query ”text messenger my phone
to my tablet”, the top-ranked app of the proposed model
is ”com.apdroid.tabtalk”, whose app descriptions are ”ablet
talk is a tablet sms texting app that lets you text from a tablet

Figure 3: Compare the weights of TF-IDF and our method
on the example query.

and even make voice calls , while your phone, stays in
your pocket!”. We can see from Table 3 that the top-10 apps
are all strongly relevant to user’s query. We compare term
weights of TF-IDF and our method on the example query
shown in Figure 3. Apparently, the intention of the query
is mainly related to ”messenger”, ”tablet” and ”phone”. On
the contrary, term of ”my”, ”to” and ”text” is comparatively
not important. We calculate the nDCG@10 of this query
and find that score acquired by our method is 0.99 while
the score acquired by TF-IDF is 0.35. Another case is the
query ”best free internet based password saving app”. The
nDCG@10 of BM25 and TF-IDF is 0 and 0.62 respectively,
while our proposed method improves this score to 0.75.
However, there are some bad cases. For instance, the score
of query ”email custom folder” is 0 nDCG@10 in baseline,
and turns no changing by our method. One possible reason
for this may be that three terms in this query are not in the
dictionary. Therefore, it’s suggested that the larger is the cor-
pus is, the better performance we will get.

Conclusion
In this paper, we propose an attention based GRU-RNN net-
work to learn term weights for app retrieval. In case of lack-
ing labels to learn term weights, we propose to acquire term
weights by training a neural network on the data with labels
of app category classification. Specifically, we use the atten-
tion mechanism to learn the weights of words and integrate
them to BM25, which is a typical score function in infor-
mation retrieval. We finally use an app retrieval dataset for
experimental study and demonstrate that our method outper-
forms baseline and the state-of-the-art methods. In addition,
we analyze query examples from the experiment and verify
that term weights acquired by our proposed method are more
meaningful and reasonable. For future work, we shall apply
this method to the online service of app retrieval data in our
company.

References
Aliannejadi, M.; Zamani, H.; Crestani, F.; and Croft, W. B.
2018. Target apps selection: Towards a unified search frame-
work for mobile devices. arXiv preprint arXiv:1805.02211.
Arif, A. S. M.; Rahman, M. M.; and Mukta, S. Y. 2009. In-
formation retrieval by modified term weighting method us-
ing random walk model with query term position ranking.
In 2009 International Conference on Signal Processing Sys-
tems, 526–530.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
Computer Science.



Beel, J.; Langer, S.; and Gipp, B. 2017. TF-IDuF: a novel
term-weighting scheme for user modeling based on users
personal document collections. Proceedings of the 12th
iConference.
Bendersky, M., and Croft, W. B. 2008. Discovering key
concepts in verbose queries. In Proceedings of the 31st an-
nual international ACM SIGIR conference on Research and
development in information retrieval, 491–498.
Buckley, C.; Singhal, A.; Mitra, M.; and Salton, G. 1995.
New retrieval approaches using SMART: TREC 4. In Pro-
ceedings of the Fourth Text REtrieval Conference (TREC-4),
25–48.
Carmel, D.; Mejer, A.; Pinter, Y.; and Szpektor, I. 2014a.
Improving term weighting for community question answer-
ing search using syntactic analysis. In Proceedings of the
23rd ACM international conference on conference on infor-
mation and knowledge management, 351–360.
Carmel, D.; Mejer, A.; Pinter, Y.; and Szpektor, I. 2014b.
Improving term weighting for community question answer-
ing search using syntactic analysis. In Proceedings of the
23rd ACM international conference on conference on infor-
mation and knowledge management, 351–360.
Chen, K.; Zhang, Z.; Long, J.; and Zhang, H. 2016. Turning
from TF-IDF to TF-IGM for term weighting in text classifi-
cation. Expert Systems with Applications 66:245–260.
Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.;
Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.;
et al. 2016. Wide & deep learning for recommender systems.
In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, 7–10.
Cooper, W. S.; Chen, A.; and Gey, F. C. 1994. Full text
retrieval based on probabilistic equations with coefficients
fitted by logistic regression. NIST SPECIAL PUBLICATION
SP 57–57.
Fang, H.; Tao, T.; and Zhai, C. 2004. A formal study of
information retrieval heuristics. In Proceedings of the 27th
annual international ACM SIGIR conference on Research
and development in information retrieval, 49–56.
G. Salton, A. W., and Yang, C.-S. 1975. A vector space
model for automatic indexing. 613–620.
Harter, S. P. 1975. A probabilistic approach to automatic
keyword indexing. part i. on the distribution of specialty
words in a technical literature. Journal of the american so-
ciety for information science 26(4):197–206.
Jin, R.; Chai, J. Y.; and Si, L. 2005. Learn to weight terms
in information retrieval using category information. In Pro-
ceedings of the 22nd international conference on Machine
learning, 353–360.
Karisani, P.; Rahgozar, M.; and Oroumchian, F. 2016. A
query term re-weighting approach using document similar-
ity. Information Processing & Management 52(3):478–489.
Li, W., and McCallum, A. 2006. Pachinko allocation: DAG-
structured mixture models of topic correlations. In Proceed-
ings of the 23rd international conference on Machine learn-
ing, 577–584.

Lin, J.; Sugiyama, K.; Kan, M.-Y.; and Chua, T.-S. 2014.
New and improved: modeling versions to improve app rec-
ommendation. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in in-
formation retrieval, 647–656.
Lioma, C., and Blanco, R. 2009. Part of speech based term
weighting for information retrieval. In European Conference
on Information Retrieval, 412–423.
Lioma, C., and Blanco, R. 2017. Part of speech based
term weighting for information retrieval. arXiv preprint
arXiv:1704.01617.
Lioma, C., and van Rijsbergen, C. K. 2008. Part of speech
n-grams and information retrieval. Revue française de lin-
guistique appliquée 13(1):9–22.
Luo, X.; Gong, Y.; and Chen, X. 2018. Central inten-
tion identification for natural language search query in e-
commerce.
Margulis, E. L. 1992. N-poisson document modelling. In
Proceedings of the 15th annual international ACM SIGIR
conference on Research and development in information re-
trieval, 177–189.
Paik, J. H. 2015. A probabilistic model for information
retrieval based on maximum value distribution. In Proceed-
ings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 585–
594.
Park, J. H., and Croft, W. B. 2010. Query term ranking based
on dependency parsing of verbose queries. In Proceedings of
the 33rd international ACM SIGIR conference on Research
and development in information retrieval, 829–830.
Park, D. H.; Liu, M.; Zhai, C.; and Wang, H. 2015. Lever-
aging user reviews to improve accuracy for mobile app re-
trieval. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 533–542.
Park, D. H.; Fang, Y.; Liu, M.; and Zhai, C. 2016. Mobile
app retrieval for social media users via inference of implicit
intent in social media text. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge
Management, 959–968.
Pasça, A. M. 2001. High-performance, open-domain
question answering from large text collections. Southern
Methodist University.
Ponte, J. M., and Croft, W. B. 1998. A language modeling
approach to information retrieval. In Proceedings of the 21st
annual international ACM SIGIR conference on Research
and development in information retrieval, 275–281.
Qiu, Y.; Bao, L.; and Shao, L. 2013. Term importance iden-
tification method based on classification. Computer Science
40(11):242–247.
Ramos, J., et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of the first
instructional conference on machine learning, volume 242,
133–142.
Rennie, J. D., and Jaakkola, T. 2005. Using term infor-
mativeness for named entity detection. In Proceedings of



the 28th annual international ACM SIGIR conference on Re-
search and development in information retrieval, 353–360.
Saboori, F.; Bashiri, H.; and Oroumchian, F. 2008. As-
sessment of query reweighing, by rocchio method in farsi
information retrieval.
Shirakawa, M.; Hara, T.; and Nishio, S. 2015. N-gram idf:
A global term weighting scheme based on information dis-
tance. In Proceedings of the 24th International Conference
on World Wide Web, 960–970.
Soucy, P., and Mineau, G. W. 2005. Beyond TFIDF weight-
ing for text categorization in the vector space model. In Pro-
ceedings of the 19th international joint conference on Artifi-
cial intelligence, volume 5, 1130–1135.
Svore, K. M., and Burges, C. J. 2009. A machine learn-
ing approach for improved BM25 retrieval. In Proceedings
of the 18th ACM conference on Information and knowledge
management, 1811–1814.
Yi, X., and Allan, J. 2009. A comparative study of utilizing
topic models for information retrieval. In European confer-
ence on information retrieval, 29–41.
Yih, W.-t. 2009. Learning term-weighting functions for sim-
ilarity measures. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Vol-
ume 2-Volume 2, 793–802.
Yin, P.; Luo, P.; Lee, W.-C.; and Wang, M. 2013. App
recommendation: a contest between satisfaction and temp-
tation. In Proceedings of the sixth ACM international con-
ference on Web search and data mining, 395–404.
Zhai, C., and Lafferty, J. 2017. A study of smoothing meth-
ods for language models applied to ad hoc information re-
trieval. In ACM SIGIR Forum, volume 51, 268–276.
Zheng, G., and Callan, J. 2015. Learning to reweight terms
with distributed representations. In Proceedings of the 38th
international ACM SIGIR conference on research and devel-
opment in information retrieval, 575–584.


